

www.jbaconsulting.com

JBA
consulting

Design and Access Statement

Kenson River Restoration

Final

Prepared for
Natural Resources Wales

Date
February 2026

Document Status

Issue date	February 2026
Issued to	Natural Resources Wales, for submission to Vale of Glamorgan Council
BIM reference	OVQ-JBA-XX-XX-RP-PL-0001- Design_And_Access_Statement
Revision	P04
Prepared by	Jennie Steele BSc (Hons) MSci Planning Consultant
Reviewed by	Della Adams HND Arb. MSc MRTPI Technical Director of Planning
Authorised by	Rachel Drabble BSc (Hons) CEnv MISEP Project Manager

Footprint

The format of this report is optimised for reading digitally in pdf format. Paper consumption produces substantial carbon emissions and other environmental impacts through the extraction, production and transportation of paper. Printing also generates emissions and impacts from the manufacture of printers and inks and from the energy used to power a printer. Please consider the environment before printing.

Accessibility

JBA aims to align with [governmental guidelines on accessible documents](#) and [WGAG 2.2](#) AA standards, so that most people can read this document without having to employ special adaptation measures. This document is also optimised for use with assistive technology, such as screen reading software.

Contract

JBA Project Manager	Rachel Drabble BSc (Hons) CEnv MIEMA
Address	Kings Chambers, 7-8 High Street, Newport, South Wales, NP20 1FQ
JBA Project Code	2025s0023

This report describes work commissioned by Natural Resources Wales. Jennie Steele and Rachel Drabble of JBA Consulting carried out this work.

Purpose and Disclaimer

Jeremy Benn Associates Limited (“JBA”) has prepared this Report for the sole use of Natural Resources Wales and its appointed agents in accordance with the Agreement under which our services were performed.

JBA has no liability for any use that is made of this Report except to Natural Resources Wales for the purposes for which it was originally commissioned and prepared.

No other warranty, expressed or implied, is made as to the professional advice included in this Report or any other services provided by JBA. This Report cannot be relied upon by any other party without the prior and express written agreement of JBA.

JBA disclaims any undertaking or obligation to advise any person of any change in any matter affecting the Report, which may come or be brought to JBA’s attention after the date of the Report.

The methodology adopted and the sources of information used by JBA in providing its services are outlined in this Report. The work described in this Report was undertaken between June 2025 and October 2025 and is based on the conditions encountered and the information available during the said period. The scope of this Report and the services are accordingly factually limited by these circumstances.

Copyright

© Jeremy Benn Associates Limited 2026

Contents

1	Introduction	1
1.1	Need	1
1.2	Proposed development	1
1.3	Site	2
2	Design development	4
2.1	Design principles	4
2.2	Options appraisal	4
2.3	Consultation	5
3	Design	7
3.1	Bank regrading	7
3.2	Reconnection of palaeo channels	8
3.3	Backwater channel creation	10
3.4	Addition of large woody material and in-channel features	12
3.5	Riparian planting	15
3.6	Impacts on trees	16
3.7	Flood Risk	17
4	Access	18
4.1	Operational access	18
4.2	Public Rights of Way	18
4.3	Construction access	19
5	Conclusions	20
List of Figures		
Figure 1-1: Red line boundary for the site		3
Figure 3-1: Kenson Restoration Design		7
Figure 3-2: Indicative diagram of bank regrading		8
Figure 3-3: Palaeo Reconnection design example using existing channel		9
Figure 3-4: Indicative diagram of floodplain lowering on palaeo channel sections		10
Figure 3-5: Indicative diagram of backwater design example using existing channel		11
Figure 3-6: Backwater design example (cutting new backwater)		11

Figure 3-9: Indicative diagram of large wood deflectors/material	12
Figure 3-10: Indicative diagram of constructed brashy berms	13
Figure 3-11: Indicative diagram of constructed brashy and site-won berms	14
Figure 3-12: Indicative diagram of constructed site won and imported gravel berms	14
Figure 3-13: Indicative diagram of constructed site-won and imported gravel bed raising	15
Figure 4-1: PRoWs in and around the site (source: https://myvale.valeofglamorgan.gov.uk/mycouncil.aspx)	18

List of Tables

Table 2-1: Development of interventions over the design process	4
---	---

Abbreviations

LPA	Local Planning Authority
NBS	Nature-based solutions
NGR	National Grid Reference
NRW	Natural Resources Wales
PAC	Pre-Application Consultation
PRoW	Public Right of Way
RPA	Root Protection Area
SINC	Site of Importance for Nature Conservation
WFD	Water Framework Directive

1 Introduction

This report has been prepared by JBA Consulting and supports a full planning application for a major development submitted by Natural Resources Wales (NRW) to the Vale of Glamorgan Council as the determining Local Planning Authority (LPA). The development is a river restoration of a 2.2km stretch of the Kenson River.

1.1 Need

The aim of the river restoration is to improve biodiversity and habitat resilience and improve the River Kenson's Water Framework Directive (WFD) status from 'Moderate' to 'Good'.

The Kenson River was previously more sinuous through its lower reaches, including through the development site. However, historic modification in the form of realignment, straightening and dredging from the 1950s has significantly shortened the length of the river, leading to a degraded and incised channel with very tall, unstable banks that is disconnected from its floodplain. Furthermore, agricultural land management practices have led to degradation of the riparian zone, with no defined buffer. Pressures acting on the modified channel include siltation, homogenous flow and degraded habitat complexity.

The current overall WFD status of the 'Kenson - confluence with Waycock to confluence with Thaw' water body is identified as 'Moderate' (2024 Cycle 3 Interim). The water body is classified as natural. The overall status objective for the water body is to achieve 'Good' status by 2027.

1.2 Proposed development

The development will include changes to the floodplain and the channel of the Kenson River. The restoration of the river corridor will establish a sinuous river planform and improve in-channel habitats using nature-based solutions (NBS) to replicate and reinstate natural channel dynamics and increase habitat diversity. Meanwhile, elements added and changed across the floodplain will increase lateral connectivity and restore habitats alongside the river. The works will consist of:

- Creating backwater areas in the current channel
- Bed raising
- Re-profiling and re-grading sections of riverbank
- Installing in-channel features, such as woody material and in-channel berms
- Reconnecting palaeo channels and channel infilling
- Floodplain lowering
- Improving riparian corridor
- Installing a new footbridge

The restoration will improve the resilience of habitats and increase biodiversity within the Kenson River. The restoration works should also improve water quality by reducing the amount of sediment entering the watercourses. Improving riparian buffer strip integrity will also help protect the banks from erosion. These gains will all contribute towards improving the WFD status of the Kenson River, with the added benefit of helping transform the site into more pleasant areas for local residents using the PRoWs and visitors to Fonmon Castle to enjoy.

1.3 Site

The stretch of river and floodplain proposed for restoration is located to the west of Penmark and south of Llancadle, between Kenson Hill (NE) to the location where the Kenson River passes under the B4265. The red line boundary used for the planning application is shown in Figure 1-1, and totals 3.94 hectares.

This area of floodplain sits entirely within the Fonmon Estate, and consists largely of agricultural land, woodland and grassland, with the low-lying single thread watercourse running through it, along with some drainage channels and existing wildlife ponds. There is a Public Right of Way (PRoW) that crosses the site east to west that connects to the village of Llancadle, and a PRoW on the west of the site running north-south from Llancadle. There is also a farm access track running alongside the river, and pylon structures across the floodplain. A number of Sites of Importance for Nature Conservation (SINCs) are on and around the site (numbers 314, 315 and 320), and there is ancient woodland on the southern valley slope.

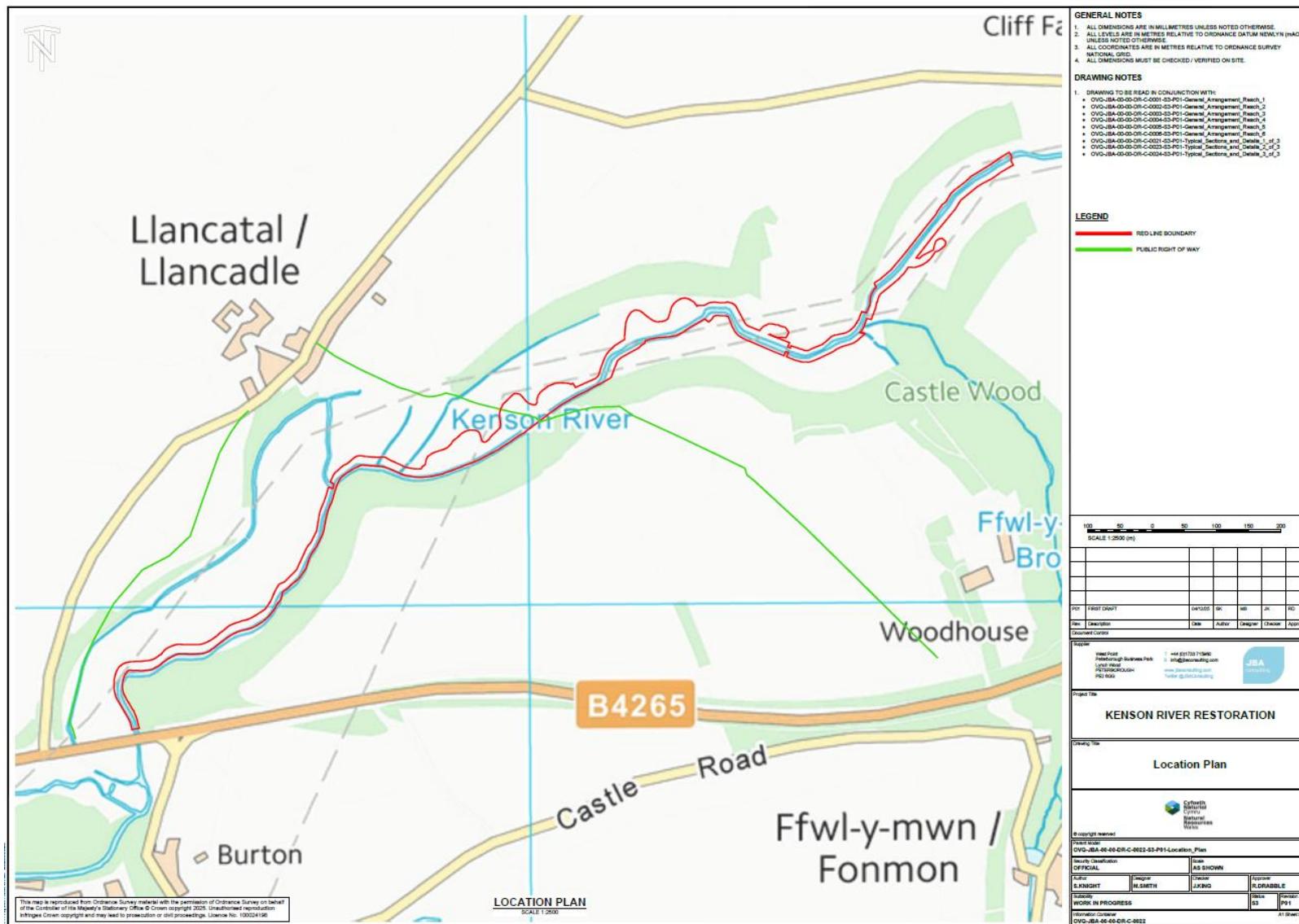


Figure 1-1: Red line boundary for the site

2 Design development

2.1 Design principles

The core design principle applied to the design is the concept of using nature-based solutions (NBS) to reverse the legacy works done to the river channel. This application of NBS is apparent across all the interventions.

Interventions are designed to replicate and reinstate natural channel dynamics and increase habitat diversity.

Typically, a site like this would display typical lowland river characteristics, for example, low energy flows, a sinuous and meandering channel with a diverse planform, and more of a relationship between the river and the floodplain. Naturally, it would have a biodiverse riparian corridor with varied plant species.

Therefore, the design principles are looking to encourage the return of natural processes and habitats to restore a more natural state of the river and wider floodplain.

2.2 Options appraisal

A number of options were identified during the feasibility study for further investigation:

- Riparian improvement/planting
- Bank regrading
- Embankment removal
- Reconnection of palaeo channels
- Scrape creation
- Backwater creation
- Creation of in-channel features: berms (made of brashy/woody material)
- Install woody material

Table 2-1 shows how three of the interventions changed and developed following the feasibility study.

Table 2-1: Development of interventions over the design process

Option	Reason for amendment	Outcome
Scrape creation	Further investigation considered reorientation and resizing of some of the scrape features, due to the change of other features such as the palaeo channels and the opportunity to add more habitat. However, the scrapes were found to create a lot of excavated material that would require disposal, and there were concerns that the scrapes would quickly silt up with the reconnection of the floodplain and provide limited ecological benefits.	Design updated to remove scrapes to reduce excavated material, eliminate post-development maintenance associated with de-silting and allow focus on higher impact interventions.

Option	Reason for amendment	Outcome
Reconnection of palaeo channels and back water creation	<p>The upstream backwater (NGR: ST 04643 68595) was modified slightly to make it wider and shorter. The proposed palaeo channel (NGR: ST 04368 68413) reconnection has been removed in favour of a backwater, due to the retention of the vehicle bridge in this location.</p> <p>The upstream palaeo reconnection (NGR: ST 04273 68459) has remained largely the same with the addition of bed raising of the existing channel, and a shallower connection to the paleo channel.</p> <p>The downstream palaeo (NGR: ST 04064 68324) has been lengthened to include a smaller palaeo channel just upstream of the proposed reconnection. This palaeo can be seen in LiDAR and appears in historical mapping.</p>	Design updated as a result of additional constraints and opportunities being identified.
Install woody material/ large wood and in-channel features: berms	<p>The introduction of woody material/ large wood has only been proposed in the upper and middle reaches of the restoration area, due to the strong tidal influence on the lower reach, which is considered to likely benefit less from the installation of large wood into the channel.</p> <p>In-channel berms have been proposed in the upper reach, where they are likely to have the most impact. They have also been positioned away from constraints such as bridges and pylons.</p>	<p>Large woody material proposed in the upper and middle reach.</p> <p>In-channel berms proposed in the upper to middle reach.</p>

In addition to the above interventions, additional restoration options for the Kenson restoration were identified based on further studies and assessment:

- Bed raising
- Floodplain lowering around palaeo channels

2.3 Consultation

A large-scale public consultation exercise has not been considered necessary as all works will take place within the Fonmon Castle land ownership. However, as a major development, statutory Pre-Application Consultation (PAC) has taken place for local people to provide thoughts and comments on the plans. A draft copy of the planning application has been made available on Citizen Space for the 28-day PAC period. Two public drop-in

events will be held during the PAC period on the Fonmon Estate, and at Llancarfan Community Cinema. A letter drop will be carried out to properties in the village of Llancadle.

Furthermore, Fonmon Castle held a 'River Day' on 6 August 2025, in which the visitors to the castle could drop-in, read information boards, and speak to NRW and project staff about the scheme. There has also been a walkover held with invited stakeholders, and NRW has engaged with Llancarfan Community Council throughout the project development.

3 Design

The design for the restoration of the Kenson River is multifaceted, involving a number of different interventions working together to achieve the project aims. Figure 3-1 illustrates the combination of restoration methods along the 2.2km stretch of river. The key elements are also described below. The indicative design diagrams shown below illustrate the details of the proposed interventions.

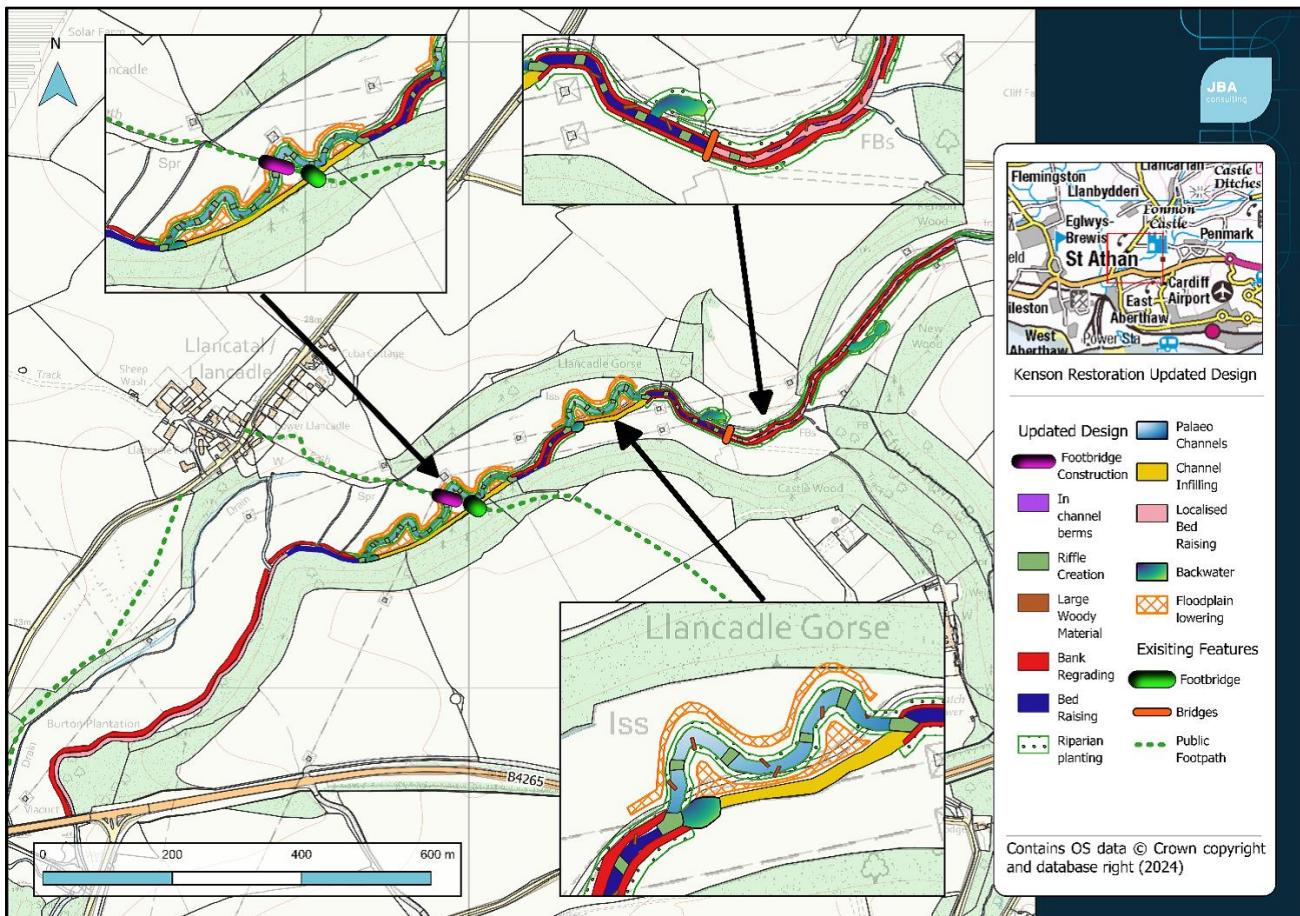


Figure 3-1: Kenson Restoration Design

3.1 Bank regrading

The existing channel is deeply set below the surrounding floodplain and channel banks are high as a result of historic channel dredging and realignment. This has resulted in bank slumping across the study reach, as the river attempts to create a shallower bank profile.

Bank regrading will increase the upper channel width for improvement of the watercourse. This will help to attenuate flow and erosive forces and encourage the establishment of wetland habitat on the banks. Creating a shallower bank profile will improve lateral connectivity to the floodplain. More stable banks will provide an opportunity for riparian vegetation to establish, resulting in less fine sediment input into the watercourse. Banks will be regraded to a more suitable angle, with a maximum slope of 1 in 3 (See Figure 3-2).

All material excavation and movement related to bank regrading will be reused within the landownership boundary of the Fonmon Estate.

Bank regrading will require the loss of some low value riparian trees and scrub which is unavoidable. These will be replaced as part of native riparian planting. Any felled trees will either be reused in the design as woody material described below (avoiding importing material to site), or by Fonmon Estate. The proposals have been designed to avoid impacts on higher value trees, following an arboricultural survey - see more information in section 3.6.

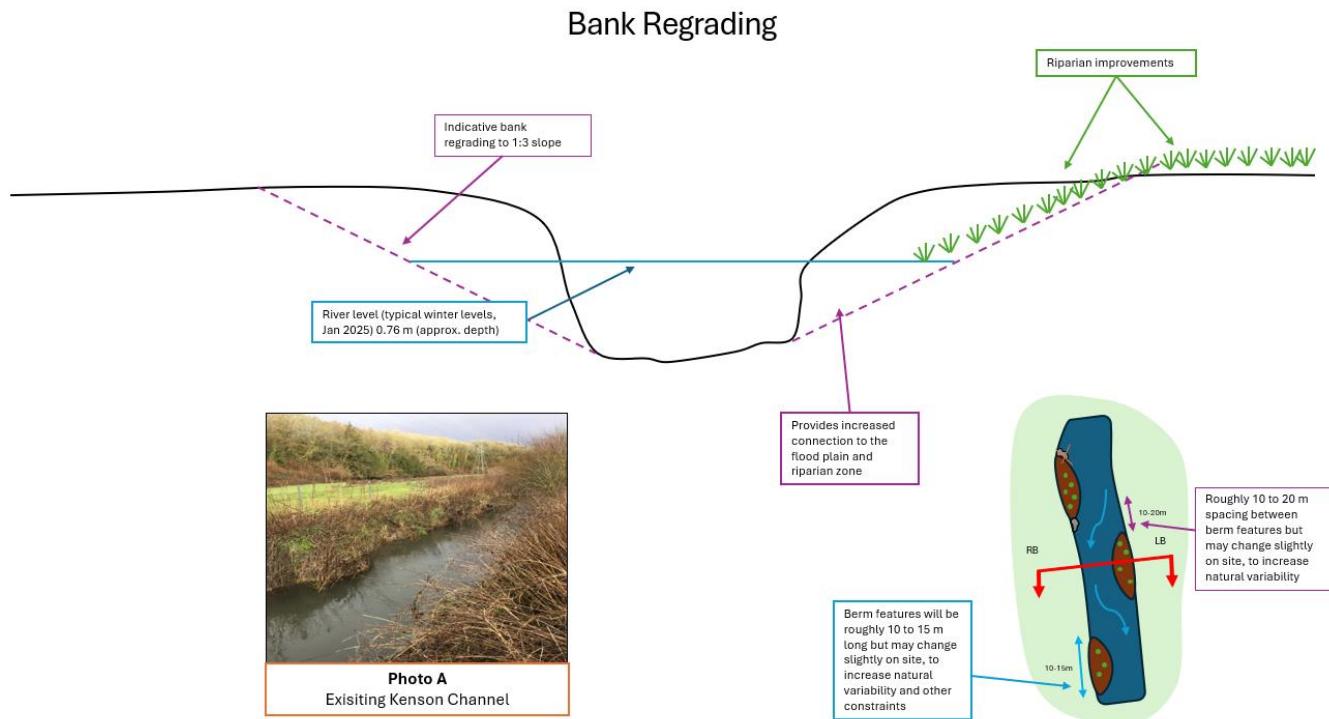


Figure 3-2: Indicative diagram of bank regrading

Natural Resources Wales benefits from certain permitted development rights afforded to them by Schedule 2 Part 15 of The Town and Country Planning (General Permitted Development) Order 1995, as amended by The Natural Resources Body for Wales (Functions) Order 2013.

It is considered that bank regrading is permitted development under Class A. (b) ("development in, on or under any watercourse or land drainage works and required in connection with the improvement, maintenance or repair of that watercourse or those works"). Nevertheless, the works are included within the red line boundary of the development for completeness of the scheme.

3.2 Reconnection of palaeo channels

There are several palaeo channels visible within the development site. The palaeo channels indicate that the Kenson River was once an active meandering watercourse.

The development includes the reconnection of these palaeo channels to restore the natural functions (including erosion, sediment transport and deposition) of the Kenson River by increasing channel sinuosity and returning the watercourse to its previous planform (see Figure 3-3). The Kenson riverbank will be raised at the point of reconnection, and the palaeo channels excavated down to meet the depth of the existing channel. This is to maintain the shallow channel gradient of the Kenson through the reconnected palaeo channel reach. The downstream limit of the palaeo channel will be cut down to create a gradual slope into the existing over deep Kenson.

It is proposed that the existing sections of the Kenson channel are partially infilled as part of the works. This will divert the majority of flows into the new palaeo channel reconnections, while maintaining a high flow route along the existing channel at times of high discharge, to increase floodplain connection. The infilling of the exiting channel will also allow for the creation of backwaters at the downstream exit of the reconnected palaeo channels. Woody material will also be placed within the Kenson channel to dissipate flow energy, create flow diversity and mitigate the risk of erosion as flow re-enters the watercourse from the reconnected section.

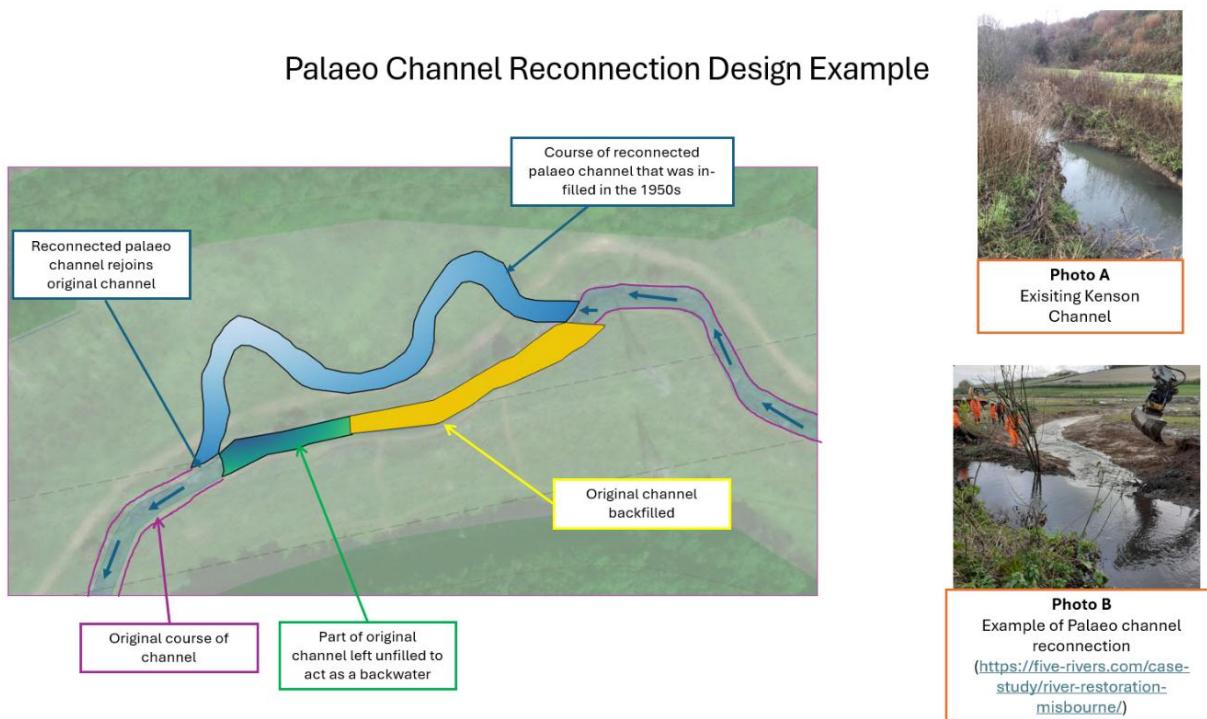


Figure 3-3: Palaeo Reconnection design example using existing channel

3.2.1 Floodplain lowering

With the existing channel set deeply in the floodplain, the reconnected palaeo channels will also be excavated, while the existing channel bed will be raised to allow connection. To mitigate the impact of this, floodplain lowering around the reconnected palaeo channels is proposed to improve floodplain connectivity (see Figure 3-4) and improve the riparian corridor along the channel through these sections that will help to provide new habitat. This will form part of the reconnection works.

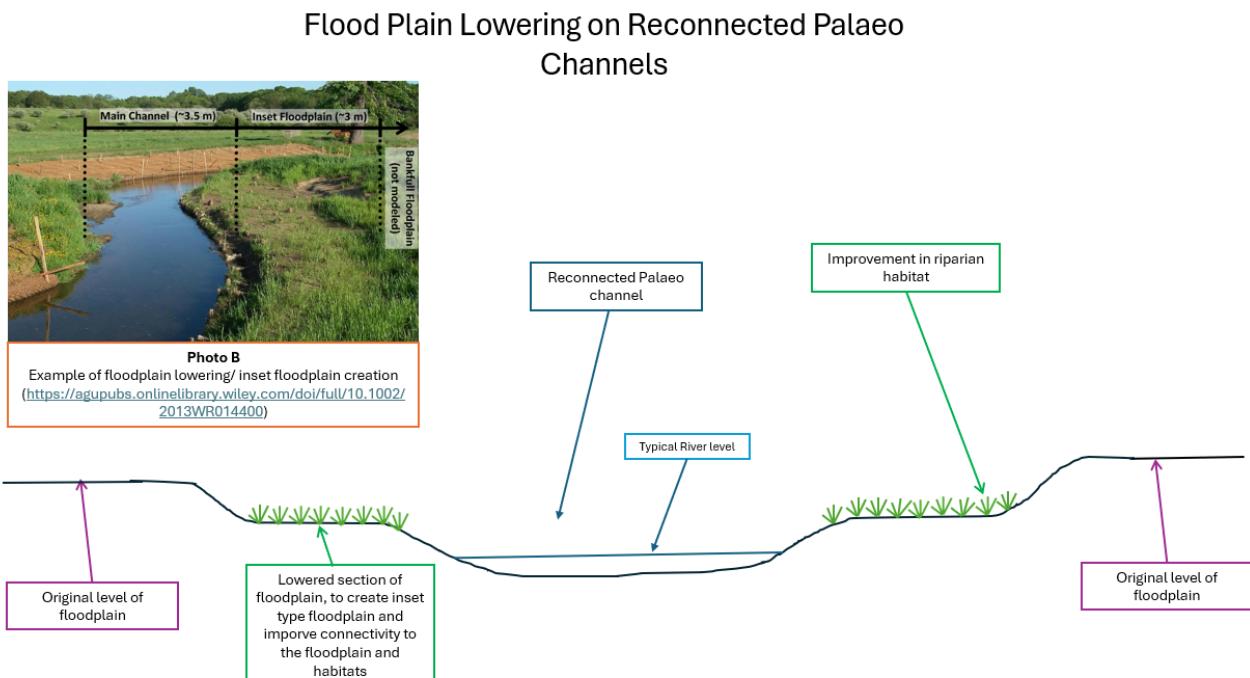


Figure 3-4: Indicative diagram of floodplain lowering on palaeo channel sections

3.3 Backwater channel creation

The design includes backwater channel creation. Two of the proposed backwater channels will be created as a by-product of the palaeo reconnection (See Figure 3-5). The other backwater channels will be newly cut into the floodplain (See Figure 3-6).

Backwater channels will provide additional flow paths during peak flow events. They will also provide habitat for wildlife, including invertebrates and fish, who seek refuge in the still water. Woody material and bed raising will be installed within the Kenson channel to locally raise water levels, encouraging flows to interact with the backwater channels and to inundate the floodplain more frequently.

Backwater design example using existing channel

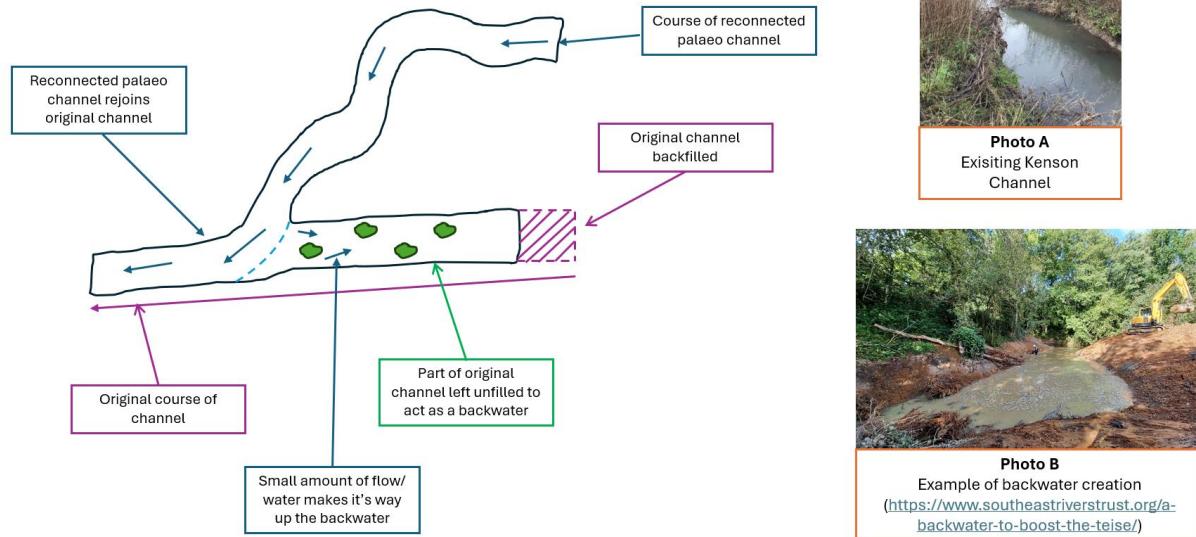


Figure 3-5: Indicative diagram of backwater design example using existing channel

Backwater design example (cutting new backwater)

Figure 3-6: Backwater design example (cutting new backwater)

3.4 Addition of large woody material and in-channel features

As with the bank regrading, it is considered that the placement of woody debris and the other in-channel features are permitted development for Natural Resources Wales under Class A. (b) of Schedule 2 Part 15 of The Town and Country Planning (General Permitted Development) Order 1995, as amended by The Natural Resources Body for Wales (Functions) Order 2013.

This legislation allows for "development in, on or under any watercourse or land drainage works and required in connection with the improvement, maintenance or repair of that watercourse or those works". Nevertheless, the works are included within the red line boundary of the development for completeness of the scheme.

3.4.1 Large woody material

The Kenson River is homogenous within the development site, with limited flow diversity. Localised flow diversity can be created by in-channel tree vegetation. As such, it is proposed that large woody material is added to the channel. Woody material will be sourced locally, potentially from trees removed as part of the proposed scheme.

Adding woody material to the channel will encourage natural processes of erosion and deposition (See Figure 3-7 below). Sediment bars may establish in the channel over time, and may act to narrow areas of channel, creating localised areas of increased flow velocity and channel sinuosity. Woody material provides habitat and a food source for a variety of aquatic macroinvertebrates, increasing the diversity and abundance of the community and providing a prey source for fish species.

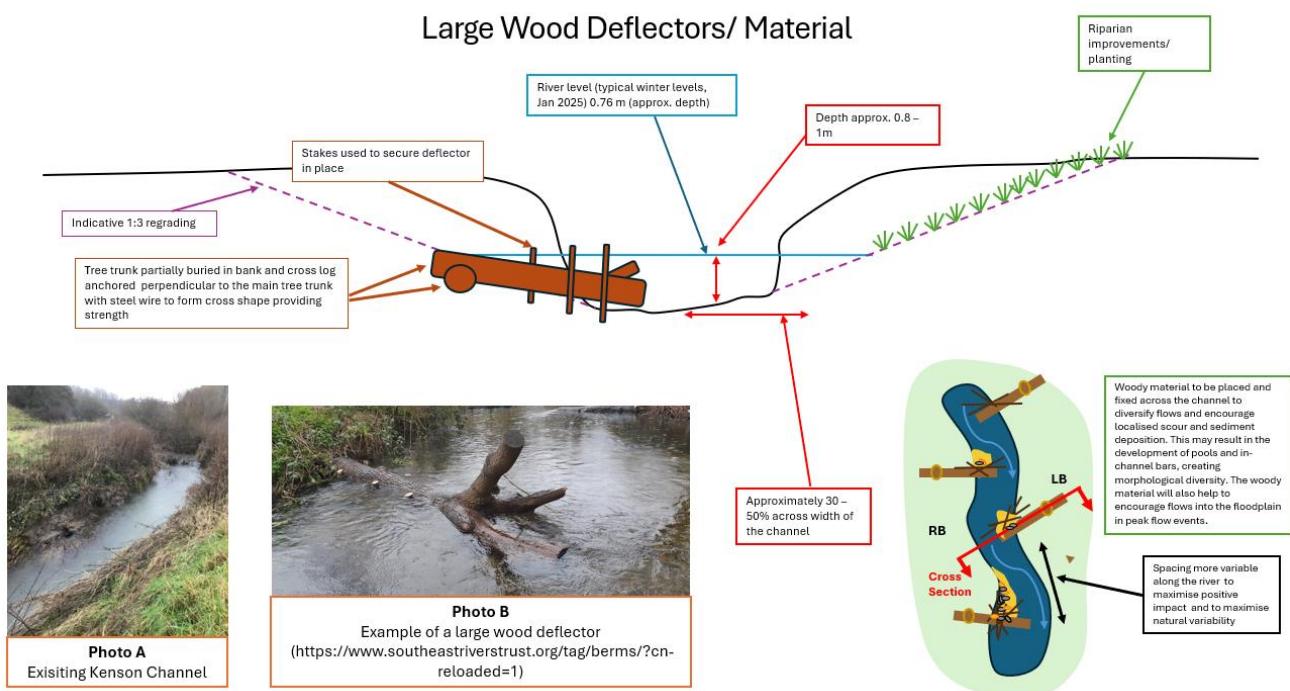


Figure 3-7: Indicative diagram of large wood deflectors/material

3.4.2 In-channel berms

Adding berms to the channel will act to narrow channel planform where it is overwide, and raise the water level of the Kenson. This will encourage flow to spill from the channel more frequently and will encourage further interaction with the floodplain. They have the potential to create a more varied channel morphology, creating pockets of faster flow which can help to 'flush out' fine sediment and re-instate clean gravels. Berms can restore more natural flow dynamics and variability. Three different designs of berms are proposed for the scheme to add diversity to the channel and the proposed design. This includes brashy berms (See Figure 3-8), berms with a base constructed of site won material and a brashy top (See Figure 3-9) and berms created with site won material and imported gravel to cover the top (See Figure 3-10).

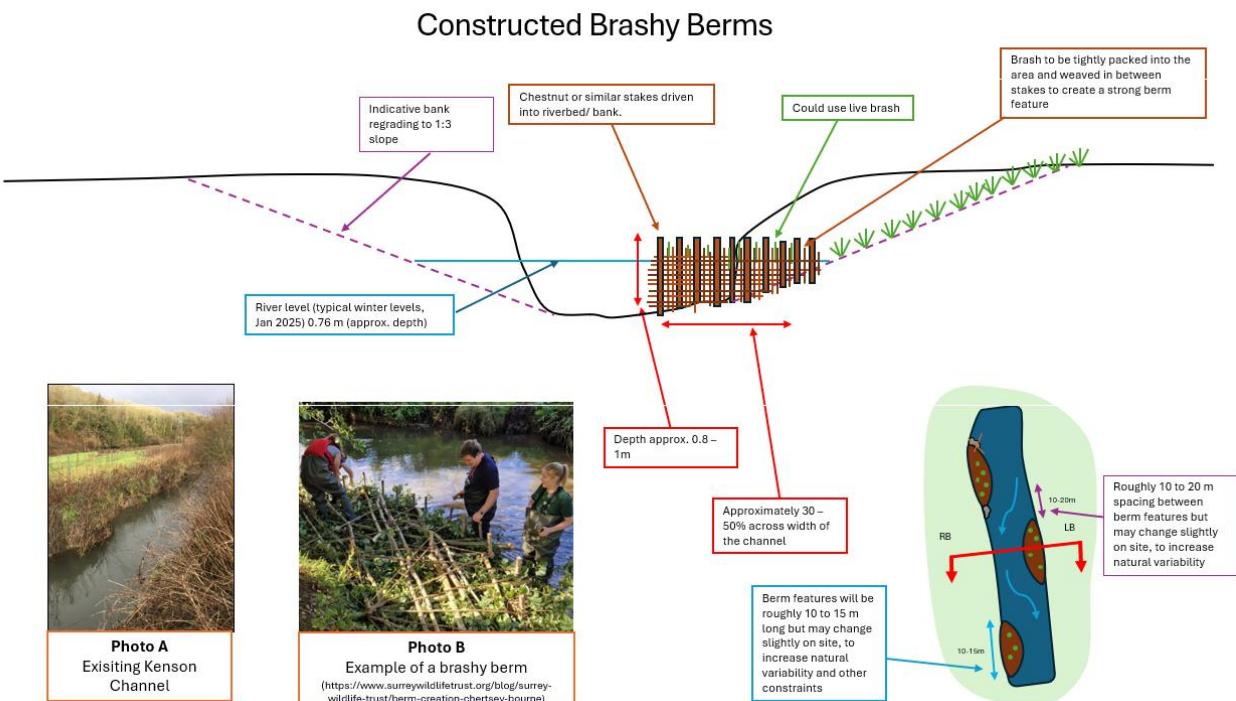


Figure 3-8: Indicative diagram of constructed brashy berms

Constructed Brashy & Site Won Berms

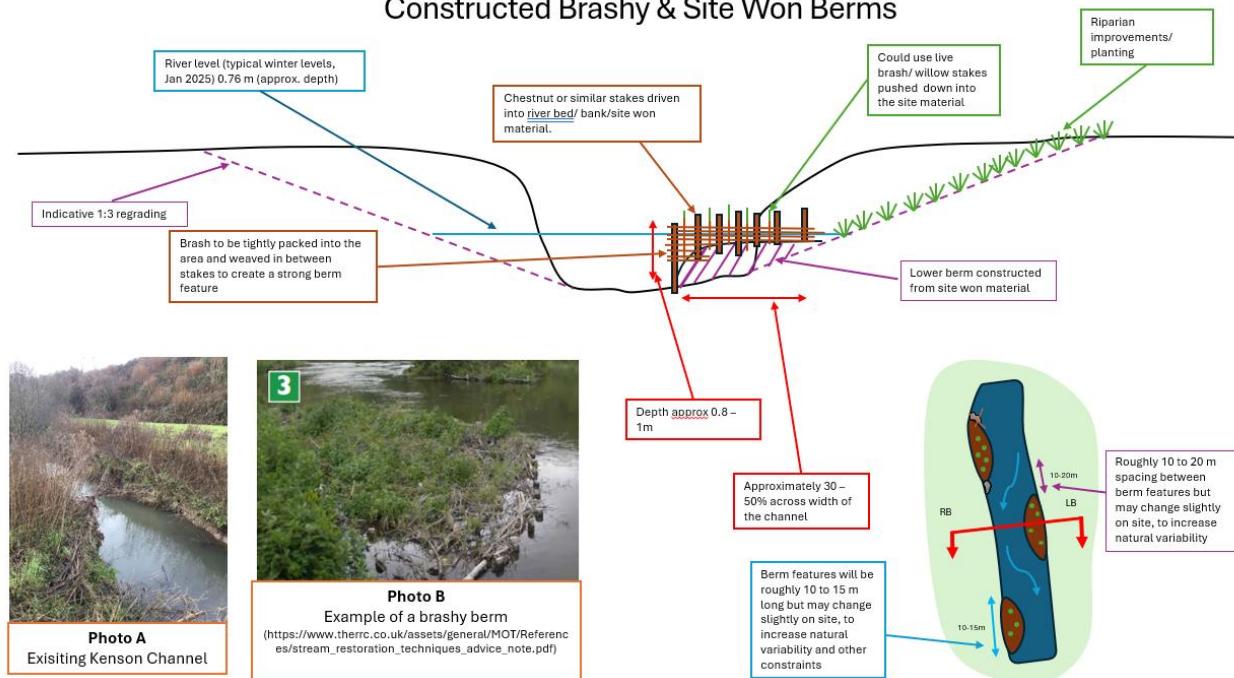


Figure 3-9: Indicative diagram of constructed brashy and site-won berms

Constructed Site Won & Imported Gravel Berms

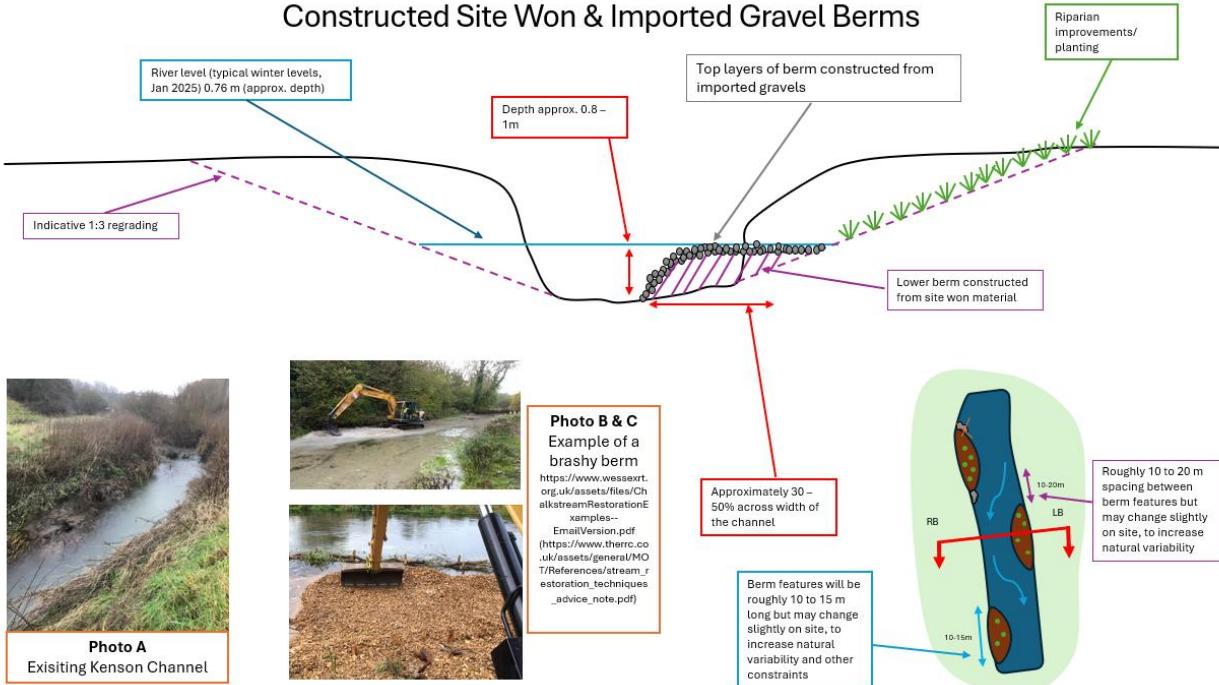


Figure 3-10: Indicative diagram of constructed site won and imported gravel berms

3.4.3 Bed raising

Bed raising has been proposed in the restoration due to the homogenous plane bed that the Kenson presents throughout the much of the restoration reach. The bed raising will introduce more diversity to the morphology of the Kenson channel, by providing different

types of flow, encouraging sediment transport and deposition features and creating more opportunity for habitat creation and water oxygenation. The bed raising will also facilitate the paleochannel reconnection, and help to encourage the Kenson onto the flood plain at times of high flow. The sections of raising are proposed to be constructed using a mixture of site-won material (fine sediment) and capped with imported gravels (see Figure 3-11). The natural sediment in this section of river is fairly fine material, which is expected for the location. The imported gravel used for capping will reduce the likelihood of the finer material being washed away.

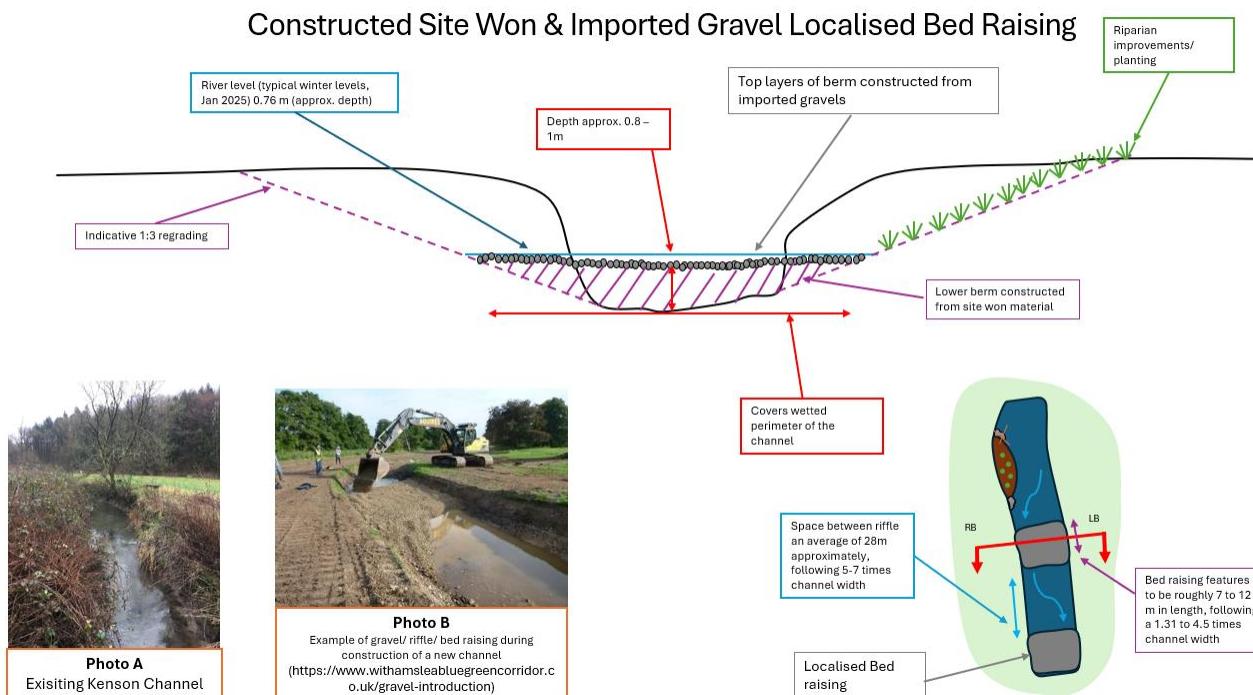


Figure 3-11: Indicative diagram of constructed site-won and imported gravel bed raising

3.5 Riparian planting

Planting vegetation along the riverbanks will allow a buffer zone to develop, improving bank stability and assisting in the reduction of poaching and bank slippage. Overall, this will help to reduce fine sediment input into the channel, which will benefit in-channel habitats and species (e.g., reduced smothering of fish spawning gravels and invertebrate habitat). Areas of soft vegetation will also be beneficial for water voles.

Riparian planting can provide additional habitat features for species, including refuge, nesting and foraging opportunities. Marginal planting can act as a buffer to reduce pollutants from entering the watercourse. The riparian planting will be agreed with the landowner, NRW Environment Team and Local Planning Authority. For the upper reaches, the riparian zone will reflect the existing habitat with riparian planting consisting of a mix of riparian woodland and more open riparian herb species. Tree species proposed for planting could include Willow, Alder, Hazel, Elder and Hawthorn. The more open riparian habitat can be achieved through the sowing of a native riparian seed mix, and where suitable areas should be sown with a Common Reed mix.

Areas of existing good riparian habitat will be identified and where possible seeds collected to supplement the riparian planting. In the lower reaches, riparian planting will be minimal with plants left to colonise naturally. The intention is to facilitate natural regeneration as much as possible.

Riparian planting is proposed along much of the watercourse in the restoration reach and extends beyond the red line boundary in the upper reach of the scheme. This is considered acceptable as riparian planting does not need planning permission as a change of mowing regime or increased planting is not an engineering operation under the definition of development set out in Section 55 of The Town Country Planning Act 1990 (as amended);

"...the carrying out of building, engineering, mining or other operations in, on, over or under land, or the making of any material change in the use of any buildings or other land."

3.6 Impacts on trees

An Arboricultural Impact Assessment is included in the submission, and a summary of impacts is below.

The main impacts on trees will be along the current river channel alignment as part of the bank regrading works. Exact numbers of trees to be impacted are in the Arboricultural Impact Assessment. Most of the trees to be impacted by the works are category 'C' trees. However, it is envisaged that regrading work will be adjusted on site to avoid excavations within the root protection areas (RPA) of these trees to ensure their retention where possible. Included within category 'C' trees impacted, a number are willows which will be coppiced and retained where possible. Three category 'B' field maples (36, 37 & 38) are located within the area of bank regrading. However, the bank regrading will avoid excavation within their RPAs in these specific locations to ensure they are retained. Discussions are still ongoing in order to retain as many trees as possible.

A 15m wide buffer zone will be in place around the edge of the ancient woodland to minimise impacts to these trees. Some areas identified for palaeochannel creation and floodplain lowering sit within this buffer in the current design, but the floodplain lowering will be amended in these locations to make sure no excavation occurs within the buffer. A number of mature and early-mature ash within the river corridor will be impacted by the proposed restoration works. However, Ash dieback is present on site, and so it is thought that most of the ash trees on site would eventually succumb to the disease in time, therefore it is all affected trees will be removed prior to construction.

Scattered groups and individual specimens of scrubby vegetation consisting of hawthorn, grey willow and white willow will require either coppicing or removal to accommodate the proposed work.

Due to the size and nature of the site it is considered impractical to implement tree protection measures as recommended in the British Standard 5837. Alternative protection barriers will consist of post and wire stock proof fencing (1.1m high).

3.7 Flood Risk

A Flood Consequences Assessment (FCA) has been prepared for the scheme to understand the risks and consequences of flooding on the development and on flood risk elsewhere, and ensure the scheme is in line with Planning Policy Wales and Technical Advice Note (TAN) 15.

The proposed development is the restoration of a river, and is therefore considered to be 'water compatible development' in line with section 9.3 of TAN-15. The site is fully within Flood Zone 3 for rivers and the sea, and partly within Flood Zone 2 and 3 for surface water and small watercourse flooding. This triggers the need for an FCA.

As water compatible development that is located on an existing floodplain, TAN-15 allows water compatible development in all flood zones. In addition, the FCA finds the consequences of flooding on the development from surface water and small watercourses to have no adverse effects. Meanwhile, there are no discernible differences to post-development fluvial flooding compared to the baseline scenario, and modest and localised increases in flood levels for tidal flooding post development are a deliberate consequence of the proposed floodplain reconnection works.

The FCA also confirms with pre- and post-development analysis that flood levels do not increase outside of the scheme and so the development does not increase flood risk to other areas.

As such, it is concluded that the proposed development meets the requirements set out in TAN-15 and Planning Policy Wales on the grounds of flood risk.

4 Access

4.1 Operational access

Post-development operational access will be largely unchanged from the existing situation.

Two PRoWs (details below) provide access through the site to the public, and it is anticipated that the development will continue to provide this public access with improved biodiversity and views across the naturalised floodplain. Visitors to Fonmon Castle will be unaffected in their access to Fonmon Castle and grounds when the castle is open. Some areas of the valley will be closed off during construction for safety reasons. Once completed, access to this area will remain the same.

Private agricultural vehicles will use a pre-existing grassed track, as they do currently.

4.2 Public Rights of Way

There are two PRoWs that cross the site, both shown on Figure 4-1:

- Footpath P4/6/2 - travels east-west across the site before heading southwest to cross the B4265
- Footpath L5/15/1 - travels broadly north-south and crosses the B4265

Footpath P4/6/2 will need to be temporarily diverted under Section 14 of the Road Traffic Regulation Act 1984 to temporarily close a Public Right of Way to facilitate the works. Upon reinstatement, the path will cross the original straightened channel that will be filled in, and go over the new re-meandered channel using a new footbridge (design to be provided by contractor and agreed with the council). It will stay on the same definitive line of the PRoW, meaning a permanent diversion will not be necessary. The PRoW is a grassed surface, so the reconnection of the floodplain and renaturalisation of the reach may mean the PRoW will become wetter/boggier at times.

Footpath L5/15/1 will be able to stay open during the works.

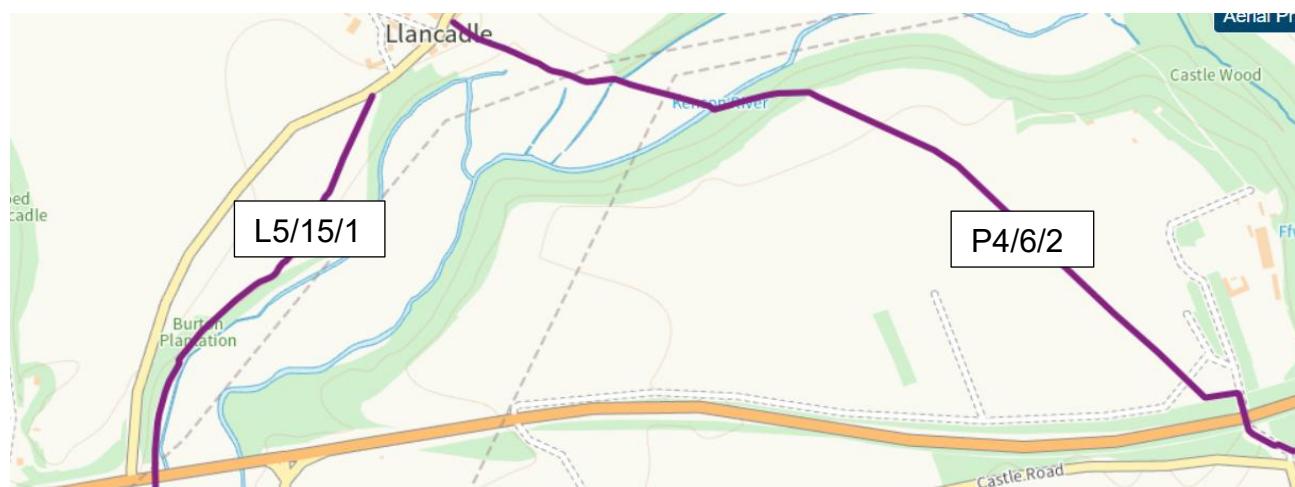


Figure 4-1: PRoWs in and around the site (source:
<https://myvale.valeofglamorgan.gov.uk/mycouncil.aspx>)

4.3 Construction access

Plant and machinery will use existing access points to reach the upstream and downstream parts of the site. For downstream access, a gate on Llancadle Road off the B4265 will be used, avoiding the Scheduled Ancient Monument nearby. The upstream access is still to be confirmed by the contractor, however it is likely to be off Kenson Hill. Further information about anticipated volume of vehicle movements and other construction impacts can be provided once a contractor is appointed.

5 Conclusions

The proposed scheme has been thoughtfully designed with NBS to restore a historically straightened and degraded stretch of the Kenson River.

A number of interventions have been explored and iteratively developed over the design cycle of the project. These will work in combination to re-naturalise a 2.2km stretch of the Kenson River to improve biodiversity and habitat resilience, and contribute to an improved WFD status by improving floodplain and river connectivity.

The surveys and reports submitted as part of the application show that a full range of environmental disciplines have been considered over the evolution of the scheme design. Supporting documentation covers ecology, geomorphology, arboriculture, ground investigation and materials management, and the bridge design will be agreed with the LPA.


Ultimately, the scheme will have multiple benefits for both environment and public access to wildlife, and will contribute to a more resilient future.

Our Offices

Bristol
Coleshill
Cork
Doncaster
Dublin
Edinburgh
Exeter
Glasgow
Haywards Heath
Leeds
Limerick

Newcastle
Newport
Peterborough
Portsmouth
Saltaire
Skipton
Tadcaster
Thirsk
Wallingford
Warrington

Registered Office

1 Broughton Park
Old Lane North
Broughton
SKIPTON
North Yorkshire
BD23 3FD
United Kingdom

+44(0) 1756 799919
info@jbaconsulting.com
www.jbaconsulting.com

Follow us on

Jeremy Benn
Associates Limited
Registered in
England
3246693

JBA Group Ltd is
certified to
ISO 9001:2015
ISO 14001:2015
ISO 27001:2022
ISO 45001:2018

