

ABERMULE BUSINESS PARK

Geo-Environmental and Geotechnical Assessment Report

MAY 2019

CONTACTS

GEMMA FRANCIS Principal Consultant

dd +44 (0)117 372 1200 m +44 (0)7590 000223 e gemma.francis@arcadis.com Arcadis. 2 Glass Wharf Temple Quay Bristol BS2 0FR United Kingdom

Arcadis (UK) Limited is a private limited company registered in England registration number: 1093549. Registered office, Arcadis House, 34 York Way, London, N1 9AB. Part of the Arcadis Group of Companies along with other entities in the UK. Regulated by RICS.

Abermule Business Park

Geo-Environmental and Geotechnical Assessment Report

Author	Rimjhim Singh	Ringhim
Checker	Andrew Watts	K
Approver	George Flower	allow
Report No	10026414-ARC-00	-XX-RP-ZZ-0003-02
Date	MAY 2019	

VERSION CONTROL

Version	Date	Author	Checker	Approver	Changes
01	17/05/19	RS	AW	GF	First Issue
02	28/08/20	AW	GF	GF	Minor clarification updates following SLR review of SCR

This report dated 17 May 2019 has been prepared for Powys County Council (the "Client") in accordance with the terms and conditions of appointment dated 09 October 2018 (the "Appointment") between the Client and **Arcadis (UK) Limited** ("Arcadis") for the purposes specified in the Appointment. For avoidance of doubt, no other person(s) may use or rely upon this report or its contents, and Arcadis accepts no responsibility for any such use or reliance thereon by any other third party.

CONTENTS

1	INTRODUCTION	7
1.1	Appointment	7
1.2	Proposed Development	7
1.3	Previous Reports	7
1.4	Limitations	7
2	SITE SETTING	9
2.1	Site Location and Description	9
3	DESK STUDY REVIEW	12
3.1	Summary of Pertinent Information	12
3.2	Preliminary Conceptual Site Model	13
3.2.1	Potential Sources	13
3.2.2	Potential Receptors	14
3.2.3	Potential Pathways	15
3.3	Potential Contaminant Linkages	15
4	SITE INVESTIGATION	19
4.1	General	19
4.1 4.2	General Exploratory Holes	
		20
4.2	Exploratory Holes	20 20
4.2 4.2.1	Exploratory Holes	20 20 20
4.2 4.2.1 4.2.2	Exploratory Holes Exploratory Hole Locations Investigation Methodology	20 20 20 22
4.2 4.2.1 4.2.2 4.2.3	Exploratory Holes Exploratory Hole Locations Investigation Methodology Cable Percussive Boring	20 20 20 22 23
4.2 4.2.1 4.2.2 4.2.3 4.2.4	Exploratory Holes Exploratory Hole Locations Investigation Methodology Cable Percussive Boring Hand Dug Pitting	20 20 20 22 23 23
4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5	Exploratory Holes Exploratory Hole Locations Investigation Methodology Cable Percussive Boring Hand Dug Pitting Trial Pitting	
4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.3	Exploratory Holes Exploratory Hole Locations Investigation Methodology Cable Percussive Boring Hand Dug Pitting Trial Pitting In Situ Testing	
4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.3 4.3.1	Exploratory Holes	
4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.3 4.3.1 4.3.2	Exploratory Holes Exploratory Hole Locations Investigation Methodology Cable Percussive Boring Hand Dug Pitting. Trial Pitting In Situ Testing General Penetration Testing.	20 20 22 23
4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.3 4.3.1 4.3.2 4.3.3	Exploratory Holes Exploratory Hole Locations Investigation Methodology Cable Percussive Boring Hand Dug Pitting Trial Pitting In Situ Testing General Penetration Testing Hydraulic Tests	20 20 20 22 23 23 23 23 23 24 24 24 24 24
 4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.4 	Exploratory Holes Exploratory Hole Locations Investigation Methodology Cable Percussive Boring Hand Dug Pitting Trial Pitting Trial Pitting In Situ Testing General Penetration Testing Hydraulic Tests VOC Head Space Screening	20 20 20 22 23 23 23 23 24 24 24 24 26
4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.3 4.3.1 4.3.2 4.3.3 4.3.4	Exploratory Holes Exploratory Hole Locations Investigation Methodology Cable Percussive Boring Hand Dug Pitting Trial Pitting Trial Pitting In Situ Testing General Penetration Testing Hydraulic Tests VOC Head Space Screening Installations and Post-fieldwork Monitoring	20 20 20 22 23 23 23 23 23 24 26 26

4.5.1	Geotechnical Laboratory Testing	27
4.5.2	Geo-Environmental Laboratory Testing	
5	GROUND CONDITIONS	
5.1	Introduction	30
5.2	Groundwater Conditions	31
5.2.1	Monitoring of Ground Gas and Groundwater Levels	32
5.3	Visual and Olfactory Evidence of Contamination	33
5.4	Geotechnical Parameters	33
5.4.1	Standard Penetration Test (SPT) Results	
5.4.2	Atterberg Limits	34
5.4.3	Particle Size Distribution (PSD) By Wet Sieve Method	35
5.4.4	Particle Size Distribution (PSD) By Pipette	35
5.4.5	Particle Density (Gas Jar)	
5.4.6	CBR Results	
5.4.7	Compaction Tests	
5.4.8	BRE Full Suite	
5.4.9	Organic Matter Content	
6	PRELIMINARY GEOTECHNICAL ASSESSMENT	
6.1	General	37
6.2	Ground Floor Slabs	37
6.3	Foundations	37
6.4	Chemical Attack on Construction Materials	
6.5	Excavations	38
6.6	Groundwater	38
6.7	Obstructions	39
6.8	Pavement and Road Design	39
6.9	Disposal and Re-Use of Materials	
6.10	Drainage	40
7	GENERIC QUANTITATIVE RISK ASSESSMENT	41
7.1	Basis of Assessment	41
7.2	Soil Screening Values (SSVs)	41
7.3	Human Health Risk Assessment	41
7.3.1	Asbestos	41
7.3.2	Chemical Testing	41

7.3.3	Middlemarch Ecological Works - Asbestos Find/Testing	42
7.4	Controlled Waters Risk Assessment	44
7.4.1	Water Quality Standards	44
7.4.2	Groundwater Testing	44
7.5	Ground Gas Risk Assessment	45
7.5.1	General	46
7.5.2	Gas Monitoring Results	46
7.5.3	Ground Gas Assessment	46
7.5.4	Radon	47
8	ENVIRONMENTAL RISK ASSESSMENT	48
8.1	Methodology	48
8.2	Contaminant Sources	49
8.3	Summary of Potential Contaminant Sources	49
8.4	Contaminant Linkages – Conceptual Model	49
8.5	Summary of Contaminant Linkages	51
9	WASTE ASSESSMENT	52
9.1	HazWaste Online	52
9.1.1	Stockpile Samples	52
9.1.2	Borehole and Trial Pit Samples	53
9.2	Estimated Waste Volumes	54
10	CONCLUSIONS AND RECOMMENDATIONS	56
10.1	Geo-Environmental Conclusions	56
10.2	Geotechnical Conclusions	57
11	REFERENCES	59

APPENDICES

APPENDIX A

Proposed Development Plan Site Location Plan Existing Site Layout

APPENDIX B

Exploratory Hole Location Plan

APPENDIX C

Standard Procedures

APPENDIX D

Exploratory Hole Logs Soakaway Results

APPENDIX E

Certification of Field Apparatus

APPENDIX F

Monitoring Data

APPENDIX G

Geotechnical Laboratory Results

APPENDIX H

Environmental Laboratory Results

Asbestos Laboratory Reports and Material Risk Assessment Reports (as provided by Powys County Council)

APPENDIX I

HazWaste Assessment

APPENDIX J

CSM Risk Assessment Methodology

1 INTRODUCTION

1.1 Appointment

Arcadis Consulting (UK) Limited (Arcadis) was instructed on 10th October 2018 by Powys County Council (PCC) 'the Client' to undertake an intrusive site investigation to support proposals (both feasibility and planning) for a proposed Business Park development associated with Maesderwen Farm at Abermule Village on A483 and B4386 road junction Powys, Wales (the 'Site').

The scope of the intrusive ground investigation was determined by Arcadis based upon the conclusions detailed within the Arcadis desk study report (Ref 1) and the proposed development plans. The work was agreed and formally instructed by PCC on 9th October 2018. The scope of the intrusive ground investigation comprised Six cable percussive boreholes, four machine excavated trial pits for Environment and WAC, hand excavated trial pits, sixteen trial pits with *in situ* soakaway tests was based on the proposed commercial end use of the site. Soil and groundwater samples were taken during the ground investigation to better characterise the potential risk levels, associated with both contamination and geotechnical constraints, and establish a land quality baseline for the site to support the planning process. Ground conditions were recorded in accordance with Eurocode 7 (Ref 2).

1.2 Proposed Development

The proposed development comprises a waste bulking facility to the southwestern section of the site with surface water compensation and business units to the north-eastern section of the site. Infrastructure (services and road) has previously been installed onsite to accommodate a business park by the Welsh Government. A proposed development plan has been provided by PCC and is presented in Appendix A.

1.3 Previous Reports

A Phase 1 desk study was completed by Arcadis in December 2017 to the full reference for which is as follows:

• Arcadis Consulting, Abermule Business Park, Phase 1 Geo-Environmental Desk Study, December 2017, 0001-UA006590-26-UP32R-01 (Ref 1).

The desk study identified potential sources of contamination on site and in close proximity of the site, hence a targeted intrusive ground investigation was recommended to better understand potential risk levels and establish a land quality baseline for the site including general ground conditions and geotechnical parameters to inform development proposals.

1.4 Limitations

This report has been prepared for PCC in accordance with the terms and conditions of appointment, dated 23rd November 2018. Arcadis cannot accept any responsibility for any use of or reliance on the contents of this report by any third party. The copyright of this document shall remain the property of Arcadis.

This report has been compiled from a number of sources, which Arcadis believes to be trustworthy. However, Arcadis is unable to guarantee the accuracy of information provided by others. The report is based on information available at the time of writing. Additional information may become available in the future which may have a bearing on the conclusions of this report and for which Arcadis cannot be held responsible.

Ground investigations by nature only reveal a small percentage of the ground conditions present beneath the site. The possibility of significant variation in ground conditions existing between sampling locations cannot be discounted. Soil borne gas and groundwater conditions are based on observations made at the time of the investigation and during subsequent monitoring visits and may be subject to significant variation due to atmospheric, seasonal or other effects.

Arcadis do not accept liability for any use of the information presented in this report unless it is signed by the author, checker and approver and marked as final.

2 SITE SETTING

2.1 Site Location and Description

The site is located approximately 0.6km to the south west of Abermule village. The National Grid Reference coordinates for the approximate centre of the Site is 315663, 294153 and the nearest postcode is SY15 6NU which is associated with Maesderwen Farm. The site covers an area of approximately 2.09 Ha. The site lies immediately south of the A483 and B4386 with the junction of the two roads forming the western and northern boundary of the site.

A site location plan and existing site layout plan are presented in Appendix A (as supplied by PCC).

The majority of the site and the surrounding area comprises farmland. The topography of the Site is generally flat, low lying land within the floodplain of the River Severn (to the north of the site). During the walkover completed for the Desk Study, it was considered suitable to separate the site into five areas as follows:

1. Livestock grazing field in the north-eastern end of the Site.

2. A roadway (roughly 'L' shaped) enabling access to an electrical substation, with associated services (identified by manhole covers and secure above ground units), potential underground unidentified tanks beneath a compound along the south-eastern boundary.

3. One large field towards the centre south-eastern of the Site.

4. Former roadway used for storage of farm equipment, soil stockpile and hay bales along the north-western boundary of the Site.

5. One small field in the south-west of the Site.

At the time of the visit there were sheep in the north-eastern field and the other fields were empty of livestock. The fields are fenced off with barbed wire/ wire connected by wooden fence posts, with saplings/ young trees growing around the circumference of the fencing. In both fields there was an odour of animal faeces and evidence of a geotextile underlying the topsoil being held in place by wooden stakes resting on the surrounding fencing, potentially used as a former plastic fence to stop the migration of newts during construction works of the road.

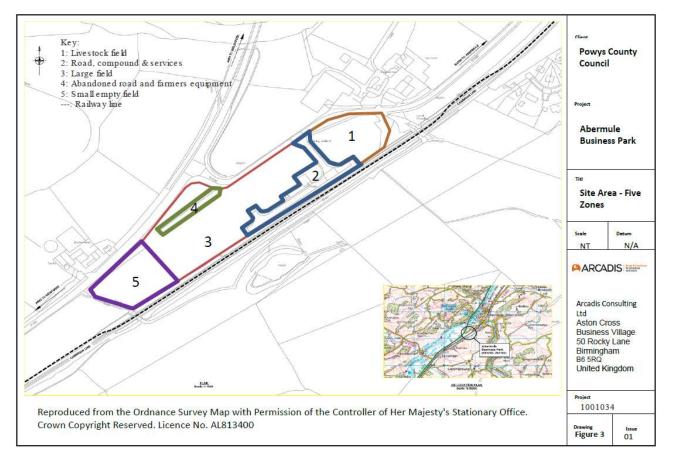
The L-shaped roadway runs along the southern boundary of the Site approximately 140.0-160.0m orientated north-east to south-west. Near to the junction of the road there is a rectangular double gated compound with four lockable bollards blocking the entrance. The compound contains two electrical substation metering units/telephone exchange box, one above ground double skinned plastic tank (containing flammable and harmful material), concrete pipes/materials and potentially two underground storage tanks (marked by circular scarring). The contents of the tanks onsite were not identified due to restriction of access to compound. Crossing the compound in a north-west to south-east orientation are concrete bollards to prevent vehicle

access onto the underground storage tank area. Approximately 5.0-7.0m south-west of the gated compound is an electrical substation, constructed of brick with two vents on each wall (two sets of vents at the base of the hut and 1 set of vents at the top).

Along the roadway On-Site and within 2.0m of the road in the adjacent field, there are a large number of manhole covers for various services. These appear to include BT communications and possibly water, gas and electricity, as well as surface water drains. There are street lamps along either side of the road. There are no overhead cables across the Site.

Along the north-western part of the Site in the central field is a broken tarmac road orientated north east-south west, which is an abandoned section of a road. This is now used for storage by the farmer, including; a mound which appears to comprise of soil with turf cover which has been disturbed at the south-western side of the mound, a pile which appears to comprise of concrete, gravel and soil, haylage/hay bales protected by a small electrified fence, tractor tyres and metal farm machinery/livestock feeders/chicken coops.

In the far south-west of the Site there is a small field separated by an open gate and a row of deciduous trees across the Site orientated north-west to south-east. In the south-western section of the Site is a gated area which leads onto a footpath that passes below a railway bridge.


The A483 and B4386 are immediately north west of the Site boundary, with fields/farmland to the west and north west, with horses and other livestock. Approximately 5m to the north of the Site is a series of farm buildings associated with Maesderwen Farm, with relatively new metal barns to store farm machinery and older brick buildings converted into stables and conjoined paddocks. An additional set of farm buildings is located approximately 5m to the north-west of the Site associated with Bryn-y-Meas Farm.

Just beyond the property boundary of the southern boundary of the Site is a railway track with associated pylons on an embankment. Between the raised railway and the Site boundary is a row of mature deciduous trees. Just beyond the property boundary to the north-east of the Site is a cluster of deciduous trees with a drainage channel, orientated north-west to south-east. A gated path is adjacent to the trees which leads to a compound containing farm machinery, and a railway bridge into fields with livestock (cows and sheep).

Abermule Business Park North-east (approximately 360-440m) of the Site, and adjacent to the B4386 is an area of land used for commercial purposes including storage of locked shipping containers and vehicles. Adjacent to this is an area of residential properties. A full description of the site setting and historical use is provided in the Arcadis Phase 1 Desk Study (Ref 1).

Figure 1 shows the site boundary and the layout of the site (as extracted from the Phase 1 Desk Study).

Figure 1 – Current Site Layout

3 Desk Study Review

3.1 Summary of Pertinent Information

Table 3.1 summarises the pertinent information from the Phase 1 Desk Study Report (Ref 1).

Table 3.1 - Summary of Environmental Data

Geology	 Made Ground – Anticipated to be present associated with abandoned roadway and use of the Site by the farmer to store rusted farm equipment to the north.
	• Superficial Deposits – Alluvial Fan deposits (clay and silt).
	• Bedrock – Nantglyn Flags Formation (Mudstone, Siltstone and Sandstone).
	• Faults – One inferred fault line at rock head approximately 250m south east of the site, and down-throwing to the east.
Mining	 No productive Coal Measures or active mines or quarries are noted within 2km of the site boundary.
	• Recorded mineral sites within 1.0km of the Site boundary is an open cast mine for clay and shale 632m to the north and are now ceased.
Hydrogeology	Superficial Deposits – Secondary Undifferentiated aquifer.
	• Bedrock – Secondary B aquifer.
	 One groundwater abstraction licence is recorded within 500m of the site, approximately 360m south west of the Site, used for farming and domestic, with Powys County Council being the licence holder.
	 Groundwater flow is anticipated to flow towards the west and south west, consistent with the catchment and flow direction of the River Severn. This assessment supersedes the flow direction detailed within the Phase 1 Desk Study for the Site.
Hydrology	The nearest mapped natural surface water features are immediately to the east and to the west and approximately 14m south east of the Site boundary (assumed to be field drains). Two ponds are located approximately 70m south and approximately 20m north west of the Site. The River Severn is located approximately 200m north of the Site at its closest point and flows to the south west. The Mule river is approximately 500m east, and there are unnamed streams located approximately 200m to the north west and approximately 20 - 250m southeast of the Site. Several mapped streams/drains appear to be culverted. Surface water courses near to the Site are likely to drain north and Westwards towards the River Severn.
	 The nearest discharge consent is approximately 300m south east of the Site and is for discharge of sewage to the surface water course which runs past the eastern boundary of the Site.
	• The Site is located within an area that is susceptible to extreme flooding from rivers without defences (Zone 2). A high risk, 30-year return area is located in the southwest. A medium risk, 100-year return is located in the centre and north-east of the Site.
Unexploded Ordnance	• The site is within an area denoted as "low" bomb risk area.
Site History	Onsite
	 The site was an open agricultural field with an unnamed road in the north west of the site. (1884-1964).
	• The road in the north west is no longer in use and there is no other significant change on the site. (1983-1984).
	• The site is labelled as Abermule Business Park with access road from B4386 running in a south-eastern direction across site and along the south-eastern boundary of the site, with a couple of small structures along the access road. (2017-present).

	fsite	
	• From 1884 to 1885 mapping; Approximately 3m from the site there is Car Railway which runs in a north-east to south-west orientation. An Unnamed re Abermule is present to the north of the site. A Reservoir is located approxim 80m south on the other side of railway. A drain is marked running west in reservoir, then along bottom of the railway embankment and then northwards eastern boundary of site. Another drain originate from railway embankment along western boundary of site. Three ponds are located approximately 60 250m north west, 230m east of the site. The River Severn is approximately north of the site and in the north east there is series of farm related building as The Court.	oad to mately ato the along at runs m and 250m
	• From 1903 to 1964, the two ponds recorded approximately 60m northwes 230m east of the site are no longer and are likely to have been infilled. A se buildings of unknown use are approximately 60m north-west of the site.	
	• From 1983 to 1984, two farms are recorded to the northwest (Brn-y-maes north east (Maesderwen) of the Site. Approximately 2-5m to the north of the the junction of the A483 and B4386 has been reconfigured.	
	 In 2000, the Maesderwen farm has been expanded to include a large comm building where there were previously smaller farm buildings and approximatel 250m east is predominantly residential property and an associated are commercial use and former reservoir south of the site has been partially of infilled and appears vegetated. 	y 220- ea for
	• By 2006, the Bryn-y-maes farm has a cylindrical structure on site and no f significant changes were noted.	further
Radon	• The site is located within a medium probability radon area (5% to 10% of h are estimated to be at or above the action level).	nomes
Potential for Collapsible or Compressible	• There is a very low potential for compressible ground stability hazards and low to moderate potential for compressible ground stability hazards on-site.	a very
Ground and Landslides	• On-site there is a very low potential of landslides, however off-site within 250m are six potential areas of land sliding with a low to high risk.	n there
Ecologically Sensitive Areas	• The site is not located within a designated Environmentally Sensitive However, ancient woodland has been identified located approximately 413m northwest and 453m to the north of the Site.	

3.2 Preliminary Conceptual Site Model

3.2.1 Potential Sources

Based on the information obtained from Desk Study report (Ref 1), potential sources of contamination were identified both on and offsite and required investigation. These potential sources are presented in Table 3.2.

Table 3.2 -	Onsite and	l offsite	potential	sources	of	contamination
			1			

Potential Contaminant Sources	Potential Contaminants
Onsite	
Made Ground associated with abandoned roadway and use of the Site by the farmer to store farm equipment.	TPHs (Total Petroleum Hydrocarbons) Metals – arsenic, aluminum, cadmium, chromium, copper, iron, lead, mercury, nickel, zinc Fly ash, slag, clinker associated with railway activities PAHs (Polycyclic Aromatic Hydrocarbons)

Potential Contaminant Sources	Potential Contaminants
	Asbestos
Spills from filling/removal of contaminating liquids associated with potential underground tanks in compound area and electrical substation.	TPHs Metals – arsenic, aluminum, cadmium, chromium, copper, iron, lead, mercury, nickel, zinc PCBs (Polychlorinated biphenyls)
Radon (naturally occurring)	Radon gas
Offsite	
Maesderwen and Bryn-y-maes Farms	Organics – TPHs and PAHs Metals Nitrates, Bacteria and Coliforms from livestock
Railway line	Organics – TPHs and PAHs Metals Fly ash, slag, clinker associated with railway activities

3.2.2 Potential Receptors

The potential receptors detailed below take into consideration the future land use for the Site. The Site is proposed to occupy a waste disposal unit and commercial business units, as proposed by Powys County Council.

Humans

- Future Site visitors, staff of business units.
- Maintenance workers and contractors following development.
- The risk to construction workers during development would be governed by Health and Safety Legislation and mitigated by the appropriate use of Personal Protective Equipment (PPE) and mitigation measures. The risk to construction workers has, therefore, not been considered in this assessment.

Controlled Waters

- Surface water: Reservoir and associated drainage around the Site <50m north-east, south-east, south and north-west of the Site. River Severn approximately 230-250m north-east.
- Groundwater beneath the Site: Superficial deposits is a secondary undifferentiated aquifer and the bedrock is a secondary B aquifer.

Buildings

- Building foundations.
- Underground services such as water supply, drainage, gas, electricity and telecommunications.

3.2.3 Potential Pathways

Potential exposure pathways are the routes that link the receptor to the contamination. The potential pathways for this Site are considered to be those listed within Table 3.3.

Table 3.3 - Identified Potential	Contaminant Pathways
----------------------------------	----------------------

Receptor	Pathways
Human Beings	Accidental ingestion of contaminants within soil, water and dust. Indoor and outdoor inhalation of dust, vapours and ground gases. Dermal contact with contaminants within soil, water and dust.
Controlled Waters (groundwater and surface water)	Leaching of contaminants from unsaturated zone into underlying groundwater. Vertical migration of soluble contaminants through the unsaturated zone into groundwater beneath the site. Horizontal migration of contaminants via groundwater aquifers to surface waters.
Infrastructure	Direct contact with aggressive ground conditions for building/structures/ services. Gas accumulation in confined and poorly ventilated spaces.

3.3 Potential Contaminant Linkages

.

This study has identified potential sources of contamination from onsite (although limited) and offsite sources of contamination which could impact site end users, controlled waters and foundations. Potential contaminant linkages for the site are presented in Table 3.4.

Table 3.4 - Potential Contaminant Linkages

Potential Contaminant Source	Potential Pathway	Receptor	Likelihood of Potentially Linkage	
<i>On-Site</i> Made Ground from roadway abandonment and rubble mounds. TPHs (Total Petroleum	Dermal contact with contaminants in soil, water and dust Inhalation of dusts, vapours or hazardous ground gas	Human Health Site users and visitors including children Maintenance workers/contractors	Low Likelihood The proposed development will predominantly be hardstanding; therefore, it is unlikely that a pathway will be present.	
Hydrocarbons) Metals – arsenic, aluminium, cadmium, chromium, copper, iron, lead, mercury, nickel, zinc. Fly ash, slag, clinker associated with railway	Leaching of contaminants from Made Ground and vertical migration into groundwater	Groundwater Underlying Secondary B aquifer and Secondary Undifferentiated aquifer	Low Likelihood The underlying superficial deposits are likely to comprise a clay component which would provide some protection to the underlying aquifers from the vertical migration of contaminants. The potential sources of contaminants are in localised locations onsite therefore this reduces the potential for widespread contamination.	
activities PAHs (Polycyclic aromatic hydrocarbon) Asbestos	Direct contact of buildings, services or foundations with contaminants in the soil and shallow groundwater.	Buildings/Underground Services Utilities, foundations and confined spaces	Unlikely The presence of Made Ground On-Site was localised and the Site history reflects the Site has mostly been greenfield; therefore, it is unlikely that building foundations and services will come in direct contact with the contaminants.	
<i>On-Site</i> Spills/leaks from underground and above Ground storage tanks in	Leaching of contaminants from Made Ground and vertical migration into groundwater	Groundwater Underlying Secondary B aquifer and Secondary Undifferentiated aquifer	Low Likelihood	
compound area and electrical substation. TPHs Metals – arsenic, aluminium, cadmium, chromium, copper, iron, lead, mercury, nickel, zinc.	Dermal contact with contaminants in soil, water and dust Inhalation of dusts, vapours or hazardous ground gas	Human Health Site users and visitors including children – Asphyxiation Maintenance workers/contractors	Given the structures appear to be relatively new, within the past 10 years, it is unlikely that the integrity of the tanks and substation has been compromised. Providing maintenance is continued and the structures were construct to specification there is a low likelihood of leaks.	
ZINC.	Migration and accumulation of ground gas which may lead to	Explosion		

Potential Contaminant Source	Potential Pathway	Receptor	Likelihood of Potentially Linkage
PCBs (Polychlorinated biphenyl)	an explosive risk within confined spaces of buildings or services.	Buildings and underground services.	
<i>On-Site and Off-Site</i> Underlying Geology Radon	Inhalation of dusts, vapours or hazardous ground gas	Human Health – Asphyxiation Site users and visitors including children Maintenance workers/contractors	Likely BRE guidance indicates that there are elevated concentrations of
gas			naturally produced radon gas in this area and basic protection measures are required in all new buildings.
<i>Off-Site</i> Maesderwen and Bryn-y- maes farms TPHs and PAHs Metals – arsenic, aluminium, cadmium, chromium, copper, iron, lead, mercury, nickel, zinc. Nitrates, Bacteria and Coliforms from livestock	Leaching of contaminants and vertical migration into groundwater	Groundwater/ surface water Underlying Secondary B aquifer and Secondary Undifferentiated aquifer Migration into drainage water/streams/River Severn	Likely Due to the topography of the Site and the surrounding valley groundwater will be present, probably at modest depth. The Site is in an area of flood risk; however, the underlying superficial deposits are likely to comprise a clay component which would provide some protection to the underlying aquifers from the vertical migration of contaminants.
<i>Off-Site</i> Historic and modern-day railway line/ Made Ground TPHs and PAHs	Migration and accumulation of ground gas which may lead to an explosive risk within confined spaces of buildings or services	Buildings/Underground Services – ExplosionUtilities, foundations confined SpacesHuman Health	Low Likelihood Whilst off site sources of potential contamination exist, it is considered none are likely to present a severe impact.

Potential Contaminant Source	Potential Pathway	Receptor	Likelihood of Potentially Linkage
Metals – arsenic, aluminium, cadmium, chromium, copper, iron, lead, mercury, nickel, zinc.	admium, chromium, copper, hazardous ground gas children ron, lead, mercury, nickel, inhalation vapours Maintenance		
Fly ash, slag, clinker associated with railway activities	Horizontal and vertical migration of contaminants in groundwater	Groundwater Underlying Secondary B aquifer and Secondary Undifferentiated aquifer	Low Likelihood Due to the topography of the Site and the surrounding valley it is likely that groundwater will be mobile, and if contamination has occurred up- gradient, it is possible this could migrate to impact the site. However the underlying superficial deposits are likely to comprise a clay component which would tend to provide attenuation and retardation of migration of contaminants.
	Direct contact of buildings, services or foundations from contaminants.	Buildings/Underground Services Utilities, foundations and confined spaces	Low Likelihood The underlying superficial deposits are likely to comprise a clay component which would provide some protection. Leachate and groundwater are less likely to migrate beneath the Site and come into contact with the buildings and services.

4 SITE INVESTIGATION

4.1 General

Ground investigation works were carried between the 7th and 22nd January 2019 with monitoring being completed on 22nd and 30th January 2019, 7th and 14th February 2019.

The scope of the ground investigation, including the location, scheduled depth and type of exploratory hole undertaken was determined by Arcadis Consulting (UK) Ltd and is summarised in Table 4.1.

The ground investigation methods were undertaken in general accordance with the principles set out in BS EN 1997-2:2007 (Ref 2) and with the general practice described in BS5930:2015 (Ref 3). The geoenvironmental aspects of the ground investigation complied with the general requirements of BS 10175+A1:2017 (Ref 4).

Table 4.1 - Initial ground investigation scope

Location ID	Hole Type	Scheduled Maximum Depth (m)	Requirements
BH101 to BH106	СР	2no. BH to 5m and 4no. BH to 10m	Determine thickness of engineering soils; collect representative samples of strata and undertake in situ tests, install groundwater/ground gas installations for subsequent monitoring.
SA1 to SA16	TP/SA	1.2m	Determine nature of shallow soils; collect representative samples and undertake soakaway tests. These will provide further site coverage to inform baseline land quality.
CBR1 to CBR44	CBR	0.8m	Provide in situ CBR values of formation level.
HTP1 to HTP8	HTP	0.2m	Determine the extent of asbestos- impacted material within stockpiles on-site and inform waste disposal / re-use options.
TP101 to TP104	ТР	1.0m	Inform waste disposal options for surplus material.

Notes

CP = Cable Percussive, SA = Soak Away, TP = Trial Pit, HTP = Hand excavated Trial Pit, CBR = Californian Bearing Ratio test

The investigation works were carried out under the supervision of a suitably experienced Arcadis ground engineer who undertook the logging and reporting of the exploratory holes and *in situ* testing.

Based on the anticipated ground conditions on site (Alluvial Fan deposits- varying composition of sand, silt and clay overlying the Nantglyn Flags Formation – mudstone, siltstone and sandstone), ground conditions beneath the site have the potential to be highly variable hence the proposed investigation should enable sufficient coverage of the site to inform both the land quality baseline assessment and a

allow for a better understanding of the ground model. Deeper boreholes would inform foundation design, while the pits would allow for completion of soak away testing. Further site coverage has been achieved through the CBR tests.

In addition, there are a number of stockpiles of material along the north western boundary of the site (along the former road). Asbestos has been identified in these stockpiles by another Consultant (Middlemarch Environmental). The results of the Middlemarch testing are discussed within Section 7.3.3. Consequently additional samples were collected of stockpiled material to test against standard soil chemical suites (including asbestos), to be able to classify the material and to inform whether the material in the fly tipped stockpiles has hazardous properties and may require disposal as hazardous waste.

Borehole installations have been included to enable the collection of groundwater samples to establish whether any on-site contamination could have leached to the underlying Secondary Undifferentiated aquifer.

Due to the potential source of ground gas from onsite storage tanks in the compound area, and the former reservoir located to the south of the site, ground gas monitoring has been included to confirm the anticipated ground gas regime. Four visits were completed at weekly intervals (at least one of which should be undertaken at a time of low or falling atmospheric pressure to capture potential worst-case scenario conditions).

The investigation works were carried out under the supervision of a suitably experienced ground engineer who undertook the logging and reporting of the exploratory holes and *in situ* testing.

4.2 Exploratory Holes

4.2.1 Exploratory Hole Locations

The co-ordinates and elevations of the exploratory hole locations were obtained by the Arcadis supervising engineer using a Trimble VRS NOW GPRS system; allowing an accuracy of +/-50 mm.

Drawing 10026414-ARC-XX-XX-DR-ZZ-0001-P1-Exploratory Hole Plan presented in Appendix B displays the as-constructed exploratory hole locations while the co-ordinates and elevation of the ground surface at each exploratory hole location are given on the individual logs.

4.2.2 Investigation Methodology

The following methods and techniques were undertaken to construct the exploratory holes at the site. The completed scope of investigation is summarised in Table 4.2.

Details of the methods of investigation and associated standards adopted and a key to the notation and symbols used on the logs are presented in Appendix C; the exploratory hole records are presented in Appendix D.

Table 4.2 - Summary of completed exploratory holes

Location ID	Hole Type	Start Date	End Date	Final depth (m)	Comment	Termination Reason
BH101	СР	10-Jan-19	11-Jan-19	10.03	N/A	Target depth achieved
BH102	СР	8-Jan-19	9-Jan-19	5.10	Borehole commenced in 150mm casing. Due to coarse fractions and dense ground conditions 200mm casing was used to drill borehole.	Terminated due to refusal in coarse Gravel.
BH103	СР	14-Jan-19	15-Jan-19	10.00	N/A	Target depth achieved
BH104	СР	15-Jan-19	15-Jan-19	10.00	N/A	Target depth achieved
BH105	СР	16-Jan-19	16-Jan-19	6.15	N/A	Terminated due to refusal in Mudstone
BH106	СР	7-Jan-19	7-Jan-19	3.50	N/A	Terminated due to refusal in Mudstone
HTP01 – HTP08	IP	15-Jan-19	15-Jan-19	0.20	N/A	N/A
SA01	TP	11-Jan-19	11-Jan-19	1.00	Soakaway infiltration test undertaken.	Pit terminated on engineer's instruction.
SA02	TP	10-Jan-19	10-Jan-19	1.00	Soakaway infiltration test undertaken.	Pit terminated on engineer's instruction.
SA03	TP	11-Jan-19	11-Jan-19	0.90	Soakaway infiltration test undertaken.	Pit terminated on engineer's instruction.
SA04	TP	10-Jan-19	10-Jan-19	0.80	Soakaway infiltration test undertaken.	Pit terminated on engineer's instruction.
SA05	TP	10-Jan-19	10-Jan-19	0.75	Soakaway infiltration test undertaken.	Pit terminated on engineer's instruction.
SA06	TP	10-Jan-19	10-Jan-19	0.70	Soakaway infiltration test undertaken.	Pit terminated on engineer's instruction.
SA07	TP	9-Jan-19	9-Jan-19	0.95	Soakaway infiltration test undertaken.	Pit terminated on engineer's instruction.

Location ID	Hole Type	Start Date	End Date	Final depth (m)	Comment	Termination Reason
SA08	ТР	10-Jan-19	10-Jan-19	1.00	Soakaway infiltration test undertaken.	Pit terminated on engineer's instruction.
SA09	TP	9-Jan-19	9-Jan-19	1.10	Soakaway infiltration test undertaken.	Pit terminated on engineer's instruction.
SA10	TP	9-Jan-19	9-Jan-19	1.20	Soakaway infiltration test undertaken.	Target depth achieved
SA11	TP	9-Jan-19	9-Jan-19	1.00	Soakaway infiltration test undertaken.	Pit terminated on engineer's instruction.
SA12	TP	7-Jan-19	7-Jan-19	0.80	Soakaway infiltration test undertaken.	Pit terminated on engineer's instruction.
SA13	TP	7-Jan-19	7-Jan-19	0.80	Soakaway infiltration test undertaken.	Pit terminated on engineer's instruction.
SA14	TP	8-Jan-19	8-Jan-19	1.00	Soakaway infiltration test undertaken.	Pit terminated on engineer's instruction.
SA15	TP	8-Jan-19	8-Jan-19	1.10	Soakaway infiltration test undertaken.	Pit terminated on engineer's instruction.
SA16	TP	8-Jan-19	8-Jan-19	1.10	Soakaway infiltration test undertaken.	Pit terminated on engineer's instruction.
TP101 - TP104	TP	14-Jan-19	14-Jan-19	1.00	N/A	Terminated on engineer's instruction.

Notes

CP = cable percussive borehole, IP = inspection pit TP = machine excavated trial pit, HTP = hand dug trial pit, SA = soakaway test

4.2.3 Cable Percussive Boring

Cable percussive boring was completed using trailer mounted Dando 3000 boring rig equipped with 200mm casing and tools to undertake two boreholes up to 5m bgl and four boreholes up to 10m bgl, however due to presence of bedrock and dense gravel some of the positions refused at a shallow depth.

Hand dug pits were undertaken in each borehole to 1.2m for service clearance purposes.

Samples of the material recovered in borehole were taken to enable representative laboratory testing. Generally small disturbed samples were taken at each change in stratum and at 0.5 m intervals thereafter in clay soils; and bulk samples were taken at 1 m intervals where the sand and gravel content of the soil was significant.

Where specified by Arcadis Consulting (UK) Ltd, open drive tube samples were taken using thin-walled sampling apparatus from the relatively undisturbed material throughout at 1.5m intervals the borehole.

Standard penetration tests (SPT) were generally undertaken at 1.0 m intervals until the termination depth of the hole.

4.2.4 Hand Dug Pitting

Hand Dug Trial Pits (HTPs) were undertaken to quantify the amount of asbestos-impacted material within stockpiles on-site and inform waste disposal / re-use options. Pits were entirely logged from the surface and arisings.

Samples of the material recovered in the trial pits were taken to enable representative laboratory testing. Generally small disturbed samples were taken at each change in stratum and at 0.5 m intervals thereafter in clay soils; and bulk samples were taken at 1 m intervals where the sand and gravel content of the soil was assessed as significant.

Photographic records of the hand excavated trial pits elevation and arisings were taken and are presented with the associated trial pits log.

4.2.5 Trial Pitting

Trial pits were undertaken using a tracked 8-ton 360 mechanical excavator; pits were entirely logged from the surface and arisings.

Samples of the material recovered in the trial pits were taken to enable representative laboratory testing. Generally small disturbed samples were taken at each change in stratum and at 0.5 m intervals thereafter in clay soils; and bulk samples were taken at 1 m intervals where the sand and gravel content of the soil was assessed as significant.

Photographic records of the trial pit elevation and arisings were taken and are presented with the associated trial pit log.

4.3 In Situ Testing

4.3.1 General

In situ testing was carried out within the relevant exploratory holes or at a specified test location. Where tests were undertaken within or associated with a specific borehole or trial pit, the test data is presented on the relevant exploratory hole log or as additional sheets to that log. As such, the location details will be the same as the associated hole and its position will be the same as the exploratory hole with which it is associated.

Where *in situ* tests were carried at standalone locations not directly associated with other exploratory holes, the tests results are presented as individual records and as such the as-constructed locations are given on the test records and their positions are shown on drawing 10026414-ARC-XX-XX-DR-ZZ-0001-P1-Exploratory Hole Plan in Appendix B.

4.3.2 Penetration Testing

4.3.2.1 Standard Penetration Tests

Standard penetration tests (SPT) were carried out as required in the investigation scope and in accordance with the methods given in the standard procedures presented within Appendix C. Generally, tests were undertaken at regular intervals throughout the borehole to provide a profile of the soil's resistance with depth and a disturbed soil samples was recovered from the SPT split-spoon tool or a disturbed sample was taken over the range of the test interval.

The N-values as determined in the field are presented on the borehole logs as uncorrected values that do not consider the energy losses or efficiency of the automatic trip hammer used to drive the test tool into the ground. The calibration certification for the test devices used in the investigation is presented in Appendix E and a summary of the SPT equipment used at each location is presented in Table 4.3.

Location ID	SPT Hammer Reference	Energy Efficiency Ratio, E _r %	Comment
BH101 to BH106	62	77	Calibration due December 2019

Table 4.3 - Test Hammer Calibrations

4.3.2.2 California Bearing Ratio Tests

California Bearing Ratio (CBR) tests were carried out in accordance with the methods given in the standard procedures presented in Appendix C. The tests were carried out by GEO Site & Testing Services Ltd of Llanelli and the results of the tests are provided in Appendix G. Hand inspection pits were initially dug with the CBR tests undertaken at approximately 0.046-0.80m bgl and testing to be undertaken by using 4 wheel drive vehicle as kentledge. Logs detailing the ground conditions within the pits are included in Appendix D.

4.3.3 Hydraulic Tests

4.3.3.1 Soakaway Tests

The soil infiltration rate was determined by conducting a soakaway tests in accordance with the methodology described in BRE 365 (Ref 5). The tests were conducted in trial pits dug to the anticipated soakaway depth. Summary information of the tests is presented in Table 4.4 while detailed test sheets are presented in Appendix D.

Table 4.4 - Summary of trial pit soakage tests

Location ID	Depth of pit (m)	Time to empty (minutes)	Soil Infiltration Rate <i>f</i> ms ⁻¹	Comment/limitations
SA01	1.00	180	1.77x10 ⁻⁵	1 cycle completed due to time constraints.
SA02	1.00	70	1.13x10 ⁻⁶	25% effective depth not achieved.
C 4 0 2	0.90	75	4.67x10 ⁻⁵	750/ and 950/ affective denth achieved
SA03	0.80	90	4.53x10⁻⁵	75% and 25% effective depth achieved.
SA04	0.80	120	7.94x10 ⁻⁷	75% and 25% effective depth not achieved.
SA05	0.75	150	3.10x10 ⁻⁷	75% and 25% effective depth not achieved.
SA06	0.70	130	5.30x10 ⁻⁷	75% and 25% effective depth not achieved.
SA07	0.95	55	5.15x10 ⁻⁵	1 cycle completed due to time constraints.
SA08	1.00	240	6.63x10 ⁻⁸	75% and 25% effective depth not achieved.
6400	1.10	120	2.57x10 ⁻⁵	750/ and 250/ affective denth achieved
SA09	1.10	40	2.92x10 ⁻⁵	75% and 25% effective depth achieved.
SA10	1.20	180	5.57x10 ⁻⁶	25% effective depth not achieved.
SA11	1.00	240	2.34x10 ⁻⁶	25% effective depth not achieved.
SA12	0.80	55	1.16x10 ⁻⁵	1 cycle completed due to time constraints.
6442	0.80	60	3.19x10⁻⁵	75% and 25% effective depth achieved.
SA13	0.80	90	1.66x10 ⁻⁶	25% effective depth not achieved.
SA14	1.00	180	8.00x10 ⁻⁷	25% effective depth not achieved.
	1.10	15	2.59x10 ⁻⁴	
SA15	1.10	20	1.53x10 ⁻⁴	75% and 25% effective depth achieved for 3 tests.
	1.10	30	1.31x10 ⁻⁴	
	1.10	15	2.43x10 ⁻⁴	
SA16	1.10	30	8.36x10 ⁻⁵	75% and 25% effective depth achieved for 3 tests.
	1.10	45	5.17x10 ⁻⁵	

4.3.4 VOC Head Space Screening

The presence of Volatile Organic Compounds (VOC) within the ground was determined using a photoionization detector (PID) to detect the 'headspace' vapours emitted by the compounds. The method is applicable to a wide range of compounds that have sufficiently high volatility to be liberated from the soil or water matrix in normal temperature and pressure ranges.

The headspace test was undertaken on the freshly extracted soil sample at environmental sample depths by placing a small amount of material into a screw-top glass jar so that the jar was not more than half-full. The jar opening was covered with an aluminium foil sheet and the lid screwed on to form an air-tight seal. The sample and jar were then shaken for about 15 seconds to break-up and disperse the soil before resting the sample for about 5 minutes.

To assess the headspace vapour, the jar lid was removed and the PID probe was inserted through the foil into the headspace area. The PID reading recorded was the highest response observed in the first 10 seconds. The screening results are presented on the relevant exploratory holes logs within Appendix D.

The testing was undertaken using a PID with a 10.6eV lamp. The PID instrument was calibrated daily using fresh air calibration techniques.

4.4 Installations and Post-fieldwork Monitoring

4.4.1 Installations

Installations to enable long term monitoring of the site were made in those boreholes selected by Arcadis Consulting (UK) Ltd and the details are summarised in Table 4.5 and are also provided on the relevant borehole logs.

Location ID	Installation Type	Response Zone Top m bgl	Response Zone Base m bgl	Geology	Comment/limitations
BH101	GMSP50	6.50	10.00	Alluvial Fan - Gravel of mudstone and siltstone	
BH102	GMSP50	3.00	5.00	Alluvial Fan - Gravel of mudstone and siltstone	
BH103	GMSP50	3.50	10.00	Alluvial Fan - Gravels of mudstone, sandstone siltstone and quartzite	Gas/groundwater installations installed. Flush cover set in 0.50 concrete.
BH104	GMSP50	8.00	10.00	Mudstone	
BH105	GMSP50	2.00	5.50	Alluvial Fan -Gravels of mudstone, siltstone and quartzite	

Table 4.5 - Summary of exploratory hole installations

Location ID	Installation Type	Response Zone Top m bgl	Response Zone Base m bgl	Geology	Comment/limitations
BH106	GMSP50	1.00	3.50	Alluvial Fan -Gravels of siltstone, mudstone and quartz	

Notes: GMSP50 = HDPE 50mm gas monitoring standpipe

The response zones target both the superficial Alluvial Fan and underlying bedrock Nantglyn Flags (Mudstone) Formations in order to capture monitoring of both ground water and ground gas within the superficial deposits and bedrock.

4.4.2 Post-fieldwork Monitoring

Post-field work monitoring was undertaken on separate visits on the 22nd January 2019 and 30th January 2019, 7th February 2019 and 14th February 2019. Four visits to the site were made to record land gas emissions and groundwater levels. During the second monitoring visit, after completion of the land gas emission monitoring, the well was purged by removing three well volumes of groundwater and in situ groundwater monitoring and sampling was undertaken. Where installations were purged dry, monitoring and sampling was conducted on groundwater recovered following recharging of groundwater in installations. Parameters measured during in situ monitoring were pH, dissolved oxygen, conductivity and redox potential.

The results of the groundwater and ground gas monitoring are presented within Appendix F.

4.5 Laboratory Testing

Geotechnical and geo-environmental chemical testing was undertaken on selected samples obtained from the exploratory holes. The testing was scheduled by the geotechnical and/or geo-environmental engineer and the testing was undertaken by an Arcadis approved testing laboratory.

4.5.1 Geotechnical Laboratory Testing

The geotechnical tests detailed in Table 4.6 were carried out in accordance with BS1377:1990: Parts 1 to 8 (Ref 6); or other methods as listed Table 4.6. The complete results of the geotechnical laboratory testing are presented in Appendix G.

Table 4.6 - Summary of geotechnical test data

Test	Method	No of Determinations	Comment
Moisture content	BS1377 Pt2-3.2	12	Classification of soils
4-point liquid and plastic limit	BS 1377 Pt2-4.3 & 5.3	12	Classification of soils
Particle Density (Gas Jar)	BS 1377 Pt2-8.2	2	Classification of soils
Particle Size Distribution - Wet sieving	BS1377 Pt2-9.2	14	Classification of soils
Particle Size Distribution – Sedimentation (pipette)	BS1377 Pt2-9.4	1	Classification of soils
Organic Matter Content	BS1377 Pt-3	1	Organic analysis of soil
BRE Full Suite	BR279	9	Chemical analysis of soil
Dry density and moisture content relationship	BS 1377:1990 Pt4- 3.3	7	Classification of soils

4.5.2 Geo-Environmental Laboratory Testing

Geo-environmental tests were undertaken on soil and groundwater samples collected during the site investigation. Testing was carried out for the contaminants detailed in Table 4.7 and Table 4.8. The results of the chemical laboratory testing are presented in Appendix H. Details of the test methodology is presented with the test results.

Test type	Method	No of Determinations
Asbestos Identification	Polarised light microscopy	34
рН	Automated electrometric measurement	34
Cyanide Free & Total	Calorimetry	34
Metals and inorganics, including As, B, Cr III, CR VI, Cd, Cu, Pb, Hg, Ni, Se, Zn), pH, Cyanide Free & Total, water soluble SO4	Induced Coupled Plasma Optical Emission Spectroscopy (ICP- OES)	34
Speciated Polycyclic Aromatic Hydrocarbon compounds (PAH)	Gas Chromatography –Mass Spectrometry (GC-MS)	34
Total Petroleum Hydrocarbon (TPH) Criteria Working Croup (CWG)	Gas Chromatography – Flame Ionisation Detector (GC-FID)	27
Benzene, Toluene, Ethylbenzene, Total Xylenes (BTEX)	GC-MS USEPA8260	27
Total Phenols	Calorimetry	34

Table 4.8 - Summary of geo-environmental test data – Groundwater

Test type	Method	No of Determinations
Metals and inorganics (As, B, Ca, Cd, Cr, Cu, Pb, Mg, Hg, Ni, Se, Zn), pH, Cyanide Free & Total, Alkalinity, Sulphate	ICP-OES & ICP-OS	6
рН	Automated electrometric measurement	6
Cyanide Free & Total	Calorimetry	6
Speciated Polycyclic Aromatic Hydrocarbon compounds (PAH)	GC-MS/USEPA 8270	6
Phenols by HPLC	In house method based on Blue Book Method.	6
BTEX	GC-MS In-house method based on USEPA8260	6
TPH CWG	In-house method by GC-MS	6

5 GROUND CONDITIONS

5.1 Introduction

The ground conditions encountered were generally consistent with the published geology identified in the Desk Study (Ref 1). A covering of Made Ground was found in the southwest of site (all the HTPs) consisting of both cohesive and granular material. Alluvial fan deposits were recorded, consisting of almost equal amounts of silt, clay, sand and gravel with a cobble content. The basal unit encountered during the investigation was weathered sandstone and mudstone of the Nantglyn Flags Formation.

The full engineering logs are presented in Appendix D.

A summary of the encountered geological strata is provided in Table 5.1. These are based upon engineering log descriptions from both boreholes and trial pits undertaken.

Table 5.1 - Summary of ground	conditions	encountered
-------------------------------	------------	-------------

Stratum	General Description	Depth range of stratum (m)	Thickness range of stratum (m)
Made Ground (Granular)	Black and brown clayey sandy angular GRAVEL of igneous lithologies. (Bitumen Seal). Identified only in HTP03.	Ground Level to 0.20	0.20
Made Ground (Cohesive)	Soft to firm brown and dark brown slightly sandy gravelly CLAY with occasional plastic and wood fragments. Gravel is subangular fine to coarse of sandstone, mudstone, limestone, brick and concrete. Encountered in all hand excavated trial pits except in HTP03. Also recovered as grass over Soft to firm greyish brown slightly sandy gravelly CLAY with few pieces of plastic & glass bottles, roots, metal cans. Gravel is sub-angular fine to coarse of mudstone and siltstone in SA10 and SA16.	Ground Level to 0.40	0.20 to 0.40
Superficial Deposits – Alluvial Fan (Cohesive)	Grass over soft dark greyish and greenish brown slightly sandy gravelly SILT. Gravel is sub-angular to sub-rounded fine to coarse gravel of siltstone. Encountered within BH101, BH102 and BH106, the same stratum was also recovered with roots and gravel of mudstone and siltstone in SA01-SA04, SA06, SA08, SA12, SA13 and SA14. Grass over soft to firm greyish and orangish brown slightly sandy gravelly CLAY with many roots. Gravel is sub-angular to sub-rounded fine to coarse gravel of sandstone, mudstone and siltstone in BH103, BH104 and BH105, and within all soakaways except SA13, and within all Trial Pits.	Ground level to 4.00	0.40 to 4.00

Stratum	General Description	Depth range of stratum (m)	Thickness range of stratum (m)
Superficial Deposits - Alluvial Fan (Granular)	Medium dense to very dense brown and grey sandy clayey sub- angular to sub-rounded fine to coarse GRAVEL of sandstone, siltstone, mudstone, quartzite and quartz with medium to low cobble content of sandstone and siltstone. in all borehole locations, SA07, SA09, SA10, SA15 and SA16, and all trial pits except TP103. Also recovered as brown gravelly to very gravelly fine to coarse SAND with gravel of sub-angular to sub-rounded fine to coarse of mudstone, siltstone, limestone and quartzite in SA01-SA03.	0.40 to 10.00	0.30 to 6.00
Bedrock (Nantglyn Flags Formation)	Weak dark grey MUDSTONE - Recovered as: very dense black slightly silty very sandy fine to coarse angular GRAVEL of mudstone. Identified in BH104, BH105 and BH106.	3.00 to 10.00 (base not proven)	Extent not proven

5.2 Groundwater Conditions

Table 5.2 presents the groundwater strikes recorded during drilling.

Table 5.2 - Summary of groundwater strikes during site investigation

Exploratory Position	Depth of Groundwater Strike (m bgl)	Geology
BH101	4.00 rising to 3.20	Superficial Deposits – Alluvial Fan
внии	7.00 rising to 3.70	(Granular)
BH103	5.00 rising to 4.80	Superficial Deposits – Alluvial Fan (Granular)
BH104	5.00 rising to 3.00	Superficial Deposits – Alluvial Fan (Granular)
	8.50 rising to 3.50	Bedrock (Mudstone)
BH105	5.10 rising to 3.20	Superficial Deposits – Alluvial Fan (Granular)
BH106	3.00 rising to 2.20	Superficial Deposits – Alluvial Fan (Granular)

5.2.1 Monitoring of Ground Gas and Groundwater Levels

Post-field work monitoring was undertaken on four visits, the 22nd January 2019, 30th January 2019, 7th February and 14th February 2019. The groundwater levels are summarised in Table 5.3 and the maximum steady state gas results are summarised in Table 5.4 over all three monitoring rounds. The full results are shown in Appendix F.

Exploratory			Monitored	Groundwat	ter Level (m	bgl)
Position	(m bgl)	Response Zone	22/01/19	30/01/19	07/02/19	14/02/19
BH101	6.50 - 10.00	Superficial Gravels (Alluvial Fan Deposits underlain by bedrock)	4.04	3.97	3.95	3.91
BH102	3.00 - 5.00	Superficial Gravels (Alluvial Fan Deposits underlain by bedrock)	4.00	3.92	3.92	3.20
BH103	3.50 - 10.00	Superficial Cohesive (Alluvial Fan Deposits underlain by bedrock)	4.09	3.99	3.96	3.34
BH104	8.00 - 10.00	Weak dark grey Mudstone		4.30	4.26	3.66
BH105	2.00 - 5.50	Superficial Gravels (Alluvial Fan Deposits underlain by bedrock)	Unable to Open	4.07	4.05	3.45
BH106	1.00 - 3.50	Superficial Gravels (Alluvial Fan Deposits underlain by bedrock)	2.65	2.71	2.73	3.56

Table 5.3 - Summary of groundwater depths from post fieldwork monitoring
--

Table 5.4 - Summary of ground gas monitoring results (maximum steady state) from all four post fieldwork monitoring rounds

Exploratory Position	Flow (l/hr)	Atmospheric Pressure Range (mbar)	CH₄ (%v/v)	CO2 (%v/v)
BH101	0	982 to 1019	0.1	0.2
BH102	0	983 to 1019	0.1	5.6
BH103	0	982 to 1019	0.1	3.2
BH104	0	984 to 1018	0.1	2.0
BH105	0	981 to 1018	0.1	2.3
BH106	0	983 to 1018	0.1	4.7

5.3 Visual and Olfactory Evidence of Contamination

Other than the made ground and the presence of non-natural materials recorded, no visual or olfactory evidence of contamination was identified during the site investigation.

5.4 Geotechnical Parameters

Geotechnical parameters for each principal stratum type encountered within the exploratory holes are summarized in the Tables 5.5, 5.6 and 5.7. These are based on test results or correlation of site observations with published data. It is important that the accompanying notes are read in detail together with the application of an experienced precautionary approach when using this data to help inform the design and construction process.

Geotechnical laboratory results are presented in Appendix G.

Table 5.5 - Summary of geotechnical properties in superficial cohesive deposits

Test	No. of results	Min	Мах
Initial Moisture Content %	11	4.8	28
Liquid Limit %	11	26	50
Plastic Limit %	11	17	32
Plasticity Index %	11	5	18
Modified Plasticity index %	11	3.2	14.76
SPT N values	4	11	32

Table 5.6 - Summary of geotechnical properties in superficial granular deposits

Test	No. of results	Values
Initial Moisture Content %	1	11
Liquid Limit %	1	33
Plastic Limit %	1	16
Plasticity Index %	1	17
Modified Plasticity index %	1	7.1
SPT N Values	17	17 to >50

Table 5.7 - Summary of geotechnical properties in bedrock

Test	No. of results	Min	Мах
SPT N values	3	50	>50

5.4.1 Standard Penetration Test (SPT) Results

5.4.1.1 Superficial Deposits – Alluvial Fan (Cohesive)

SPT tests were undertaken within the cohesive superficial deposits. SPTs were undertaken to maximum depth of 2m in the cohesive material.

SPT N values recorded within the cohesive superficial deposits ranged from 11 to 32 and were representative of stiff to very stiff consistencies.

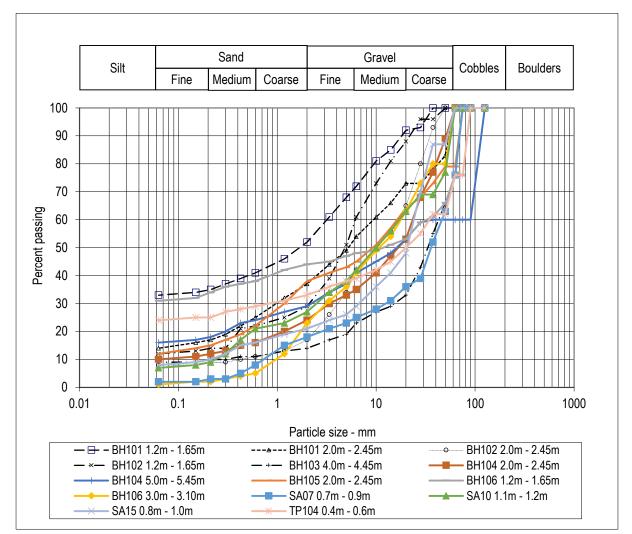
5.4.1.2 Superficial Deposits – Alluvial Fan (Granular)

In Granular superficial deposits SPTs were undertaken maximum depth of 9.50m and SPT N values recorded between 17 and >50. This is indicative of medium dense to very dense granular deposits. It should be stated that it is not clear if SPT N values >50 are a true representation of ground conditions onsite or the results of cobbles present and therefore should be used with caution.

5.4.1.3 Bedrock

the SPT N values recorded at 6m and 8m depth are 50 and >50 respectively which itself is indicative of bedrock (weathered mudstone). Chiselling was also undertaken in hard strata (in BH102 where boulders are encountered) to assist in confirming the presence of bedrock deposits. The chiselling details are presented on the exploratory logs in Appendix D.

5.4.2 Atterberg Limits


Atterberg tests undertaken on cohesive superficial deposit samples recorded results indicative of low to high plasticity soils. The modified plasticity index ranged from 3.2 to 14.76%, and according to NHBC Chapter 4.2 (Ref 7), is representative of low volume change potential soils.

5.4.3 Particle Size Distribution (PSD) By Wet Sieve Method

5.4.3.1 Granular Superficial Deposits

Fourteen PSD tests were undertaken on granular superficial deposits at positions outlined in Figure 5.1. Tests were undertaken ranging from 0.40m to 5.45m bgl. PSD results are included within the geotechnical laboratory report (Appendix G).

The results of the PSD samples generally confirm the exploratory holes logs and the ground conditions outlined in Section 4.1. The fourteen test results are fairly consistent, with the main constituent being very sandy gravels (up to 83% in BH102) although with quite variable equal amounts of fine material (up to 33% in BH101 and less than 5% SA7 and BH106). Very coarse material (>63mm) (i.e. cobbles) was identified in BH104. This variation in fine material is extremely important to soakage performance.

5.4.4 Particle Size Distribution (PSD) By Pipette

One PSD test was carried out using sedimentation analysis (by pipette) with the sample obtained from BH103 (3.00m to 3.45m). The test result recorded a very clayey/silty very sandy Gravel, where 49% of particles were less than 0.02mm diameter.

5.4.5 Particle Density (Gas Jar)

Particle density tests were carried out within two samples. The results recorded density as 2.62 Mg/m3 in TP101 (0.60 - 0.80m) and 2.63 Mg/m3 in TP104 (0.40 - 0.60m).

5.4.6 CBR Results

Forty-Four California Bearing Ratio (CBR) tests were undertaken on site between 0.046m and 0.8m within cohesive superficial deposits, described as brown fine to coarse gravelly silty CLAY. CBR results ranged from 3.5% to 11.2%.

5.4.7 Compaction Tests

Seven Dry Density/Moisture content tests were undertaken on Alluvial Fan deposits (granular and cohesive) comprising silty clay and sandy gravel, positions outlined in Figure 5.1. Tests were undertaken on four boreholes (BH101, BH102, BH103 and BH104) at a depth of between 0.50m to 2.45m and in one soakaway trial pit (SA 15) at a depth of 0.30m to 1.00m. Results are included within the geotechnical laboratory report (Appendix G).

The results of the Compaction test indicates that the maximum dry density ranges from 1.82 to 2.19 mg/m^3 and the Optimum Moisture content ranges from 8 to 13%.

5.4.8 BRE Full Suite

Nine samples were tested for the BRE full suite (BRE BR279) and were analysed for parameters pH, water & acid soluble sulphate, total sulphur, magnesium, chloride and nitrate. The results indicated that pH ranged from 6.64 to 8.01, acid soluble sulphate ranged from 0.25 to 0.31%, SO₄ aqueous extract sulphate from <0.01 to 0.04g/l, Total sulphur 0.11 to 0.13% and the nitrate value was between 10 and 50mg/l. Magnesium concentration was recorded to be below 1g/l and chloride was below method limit of detection. Results indicated moderate values for all the parameters and are attached in Appendix G with the geotechnical results.

5.4.9 Organic Matter Content

One test was carried out for organic matter content from a sample obtained from BH103 (1.20m-1.65m), which indicated a result of 1.9%.

6 PRELIMINARY GEOTECHNICAL ASSESSMENT

6.1 General

At the time of writing it is understood that the proposed development will comprise a waste bulking facility to the southwestern section of the site and business units to the north-eastern section of the site. Infrastructure (services and road) has previously been installed onsite to accommodate a business park by the Welsh Government. A proposed development layout plan has been provided but no information regarding structural loadings have been provided at this stage.

It is assumed that the site levels will remain unchanged for the assessment. The following assessment and recommendations will need to be reviewed when design details are available.

6.2 Ground Floor Slabs

In accordance with NHBC guidance 5.1 "substructure and ground bearing floors", shrinkable soil, expansive materials or other unstable soils may require suspended floor construction. Shrinkable soils are classified as those containing more than 35% fine particles (silt and clay) and have a modified Plasticity Index of 10% or greater (see Chapters 4.2 'Building near trees' (each section) and 5.2 'Suspended ground floors' (each section)).

The modified plasticity index for site soils varies between 3 and 15%, thus do (marginally) meet the criteria of "shrinkable soil". Parts of the site are underlain by variable Made Ground (fill) and this is likely to have poor and variable load bearing characteristics. Depending on where buildings are to be located, and their structural from and loadings, if fill exceeds 600mm and/or shrinkable clays underly the floor area, suspended ground floor may be required. Plot specific testing should be considered to better inform this decision.

6.3 Foundations

The ground conditions beneath the site generally comprise limited made ground over variable superficial deposits comprising various amounts of silty clay, gravelly sand and sandy gravel overlying siltstone, mudstone and sandstone bedrock. Whilst the granular materials are relatively dense and suitable to support up to moderate loadings (likely to be sufficient for two to three storey business units) there are some soft clays present, and these would be unsuitable, except perhaps for very simple light weight small structures.

The proposed development is to be two business units and a recycling bulking facility.

Made Ground soils are not considered to be a suitable founding stratum. The underlying Alluvium Fan Deposits and Bedrock of Nantglyn Flags Formation Member recorded a number of SPT N-Value values ranging from 11 to >50 at depths ranging from 1.20m bgl to 10.00m bgl. The superficial deposits are noted to be laterally variable, and as such a consistent founding stratum should be targeted. The chosen foundation solution should target the underlying Gravel within the Alluvial Fan Deposits or the Nantglyn Flags Formation Member at depth.

A number of foundation solutions are deemed viable for the subject site including traditional strip, trench fill or pad footings, or where unsuitable materials are too thick, or loads higher, vibro-stone columns or mini-piles. This is primarily due to the variation within the shallow deposits (i.e. less than 2m bgl), and the variation in depth that the Gravels within the Alluvial Fan deposits were encountered across the development area. In general trench or strip foundations are not economical at depth of greater than 2mbgl. The chosen foundation solution should avoid transition between cohesive and granular, to minimise risk of differential settlement.

Ground improvement techniques may be viable at the subject site through the use of vibrostone/concrete columns, ideally where the underlying competent strata is the granular Alluvial Fan deposits. The subsequent foundations should be 'rafted strips' – to avoid any differential settlement.

If a piled foundation solution is chosen, then Detailed pile designs (in terms of pile type, depths, and method of installation) would be dependent upon the required working loads and should be undertaken in conjunction with a reputable, specialist, piling contractor; ideally with local experience.

Once site layouts are known, and building types and structure form are decided, it would be prudent to undertake plot specific trial holes, to determine the most economical form of foundation and ground floor slab combination.

6.4 Chemical Attack on Construction Materials

With reference to guidance outlined within BRE document SD1 "Concrete in aggressive ground" (2005) (Ref 10), the test results returned for sulphate and pH values across the site correspond to a Design Sulphate Class (DS) of DS-1 and an Aggressive Chemical Environment for Concrete Class (AC) of AC-1.

6.5 Excavations

It is likely that the majority of the overlying Made Ground and superficial cohesive deposits could be excavated using a conventional backhoe excavator. Due to the presence of variable superficial deposits in places, some temporary support or battering back may be required for deeper excavations. Groundwater entry will likely occur and hence dewatering methods will be required for deeper excavations.

6.6 Groundwater

During the site investigation groundwater was encountered in all the deeper borehole locations except in BH102. The groundwater strikes were all encountered in the granular superficial Deposits and mudstone between 3.20m and 7.00m bgl. The post field work monitoring identified groundwater depth in the boreholes ranging from 2.71m to 4.30m bgl, within the granular superficial deposits and bedrock. Therefore, it is anticipated that significant groundwater ingress into shallow excavations is unlikely. However, following wet periods for example, shallow groundwater is more likely to be encountered, and dewatering methods such as sump pumping of groundwater ingress and other such methods may be required.

6.7 Obstructions

No evidence of buried structures or services was encountered during the site investigation. However, storage tanks and electricity substations currently occupy the site in the central area. It is anticipated that obstructions such as historic foundations, may require removal where they may influence future development including foundations, pavements and services as they may act as a hard spot creating differential settlement issues. Should any soft spots be found as a result of buried structures being removed then it is recommended that these be replaced with a suitable well compacted type 1 granular fill and proof rolled.

6.8 Pavement and Road Design

Based upon current design plans it is understood that the proposed developments within the site include internal roads for the site to be developed as business park.

The results of CBR undertaken on site between 0.046m and 0.8m within cohesive superficial deposits, ranged from 3.1% to 11.2%. Based upon these results and due to the variability of the Made Ground a design CBR of 3-5% should be achievable. However, similar conditions will need to be confirmed throughout site. If the formation is within areas recorded with soft to firm clays a lower CBR value of 2% may be assumed for preliminary design.

It is recommended that further testing be undertaken during earthworks at the proposed formation level (and specifically in superficial deposits if the Made Ground material is fully removed).

Cohesive material will be frost susceptible and this will need to be considered in pavement designs. Shallow/perched groundwater may also act as a constraint on pavement design. Areas of loose / soft spots and hard spots should be excavated and replaced with suitable materials.

6.9 Disposal and Re-Use of Materials

Pavement and services construction are likely to generate a significant volume of excess arisings. Early consideration should be given to how this material will be managed, re-used or disposed of. Any material proposed for re-use must be proven to be suitable for its intended use both geotechnically and geo-environmentally.

Excavated soils which are not re-used onsite will need to be disposed of offsite to an appropriately licenced waste disposal or treatment facility. Material identified as waste will need to be assessed to determine its waste classification and Waste Acceptance Criteria (WAC) testing undertaken to determine the potential waste disposal options.

Appropriate testing including compaction testing should be carried out to confirm the materials engineering suitability of the re-used material. Materials should be re-use in accordance with an engineering specification and compliance supported with verification testing.

Made Ground has been identified in all the hand dug trial pits in the north west of the site. Made Ground should be handled, managed and stored separately form natural inert arisings. Material which appears to be 'clean' should be segregated from material which appears to be contaminated. Arisings should

not be used elsewhere on site as engineering fill unless they can be proven to be suitable for its intended use and not present a risk to controlled waters and human health. Refer to Chapter 9 for further information regarding the stockpiles along the northern part of the site.

6.10 Drainage

Sixteen Soakaways were completed across the site. The tests were undertaken in the cohesive and granular superficial deposits up to 1.2m in depth. No results appropriate to design are available for SA04, SA 05, SA06, SA 08 (undertaken within cohesive clays encountered at these locations) as the water level did not achieve the 75% and 25% effective depth mark. Therefore, this is indicative of very poor drainage conditions.

The effective depth was achieved in the other SAs (the majority of them are within granular Alluvial Fan deposits), however due to time constraints only one test cycle could be undertaken for most of them.

The soil infiltration rate for SAs ranged from 8×10^{-7} to 2.59×10^{-4} and may be described as having low to medium soakage potential, indicative of poor to good drainage conditions.

Based upon this information and taking due note of the variability of the superficial deposits, it may be possible for drainage systems to be implemented within the gravels. However, as demonstrated within the variation of results obtained, parts of the site would not be appropriate, especially in areas where a thickness of cohesive strata is present nor where relatively dense granular deposits have a higher proportion of fines. As a guide, greater than approximately 8 to 10% fines within an otherwise granular material significantly reduces the material's permeability and soakage potential.

Therefore, it is considered that Sustainable Urban Drainage Systems (SUDS) is tentatively suitable for the proposed development, providing locations are able to target the more permeable gravels within the Alluvial Fan deposits. Further close spaced testing is likely to be required, and discussions held with NRW and Local Authority drainage team.

7 GENERIC QUANTITATIVE RISK ASSESSMENT

7.1 Basis of Assessment

As part of the intrusive investigation, thirty-four soil samples, comprising eight Made Ground and twentysix natural soil samples were collected for geo-environmental testing, targeting areas where sources of contamination were identified during the desk study report (Ref 1), including BH104 targeting the potential USTs within the gated compound, as well as to provide a general site coverage. Geoenvironmental testing was undertaken to understand the prevailing chemical regime and to determine whether potential risks would be introduced to site users and the water environment due to the proposed works.

The exploratory hole location plan is presented in Appendix B and the chemical testing results are presented in Appendix H.

7.2 Soil Screening Values (SSVs)

In accordance with current UK guidance and legislation, the analytical data has been compared to Generic Assessment Criteria (GAC) calculated using the CLEA (v1.6) model and using the exposure assumptions and toxicological input parameters prescribed in the Environment Agency Contaminated Land Reports (EA CLRs) for a Tier 1 screening assessment.

The soil screening values have been taken from LQM / CIEH Suitable for Use Levels (S4ULs) for Human Health Risk Assessment (Ref 11). In the absence of a S4UL for Lead, the Category 4 Screening Level (C4SL) has been adopted (Ref 12).

Considering the proposed development (i.e. covered in hardstanding), it is considered appropriate to adopt the screening criteria for a "Commercial/Industrial" end use for the initial screening process.

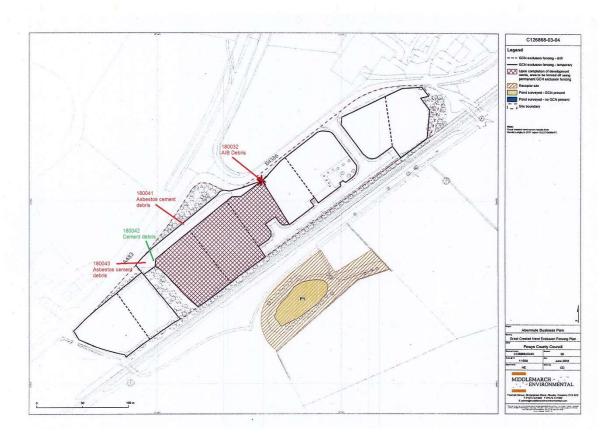
Screening criteria for 1%, 2.5% and 6% soil organic matter (SOM) have been developed to take account of the variation in organic content of the different soil types. Criteria relating to a SOM content of 1% have been adopted for this assessment based on soil organic matter tests undertaken on two soil samples which yielded results of 0.5% and 0.6% within the natural superficial deposits.

7.3 Human Health Risk Assessment

7.3.1 Asbestos

Eight samples of Made Ground and twenty-six samples of natural soils were screened for the presence of asbestos fibres. Asbestos was not detected in any of these samples.

7.3.2 Chemical Testing


Chemical testing was undertaken on 26 samples of natural soils and 8 samples of Made Ground for Metals, Inorganic Compounds, Polycyclic Aromatic Hydrocarbons (PAH), Monoaromatics and Petroleum Hydrocarbons. No exceedances were identified against the relevant screening criteria.

7.3.3 Middlemarch Ecological Works - Asbestos Find/Testing

During ecological works undertaken at the subject site (the erection of the newt fencing), the ecological contractor encountered suspected pieces of ACM (Asbestos Containing Material). A further area of stockpiled material was also identified.

Consequently 4 samples were obtained from suspect material and were analysed for the presence of Asbestos. The lab data and sampling locations have been provided to Arcadis by PCC for the purpose of this assessment. The sample locations are detailed within the Middlemarch Location Plan in Figure 7.1.

Of the 4 samples, 3 positive detections were made and are detailed below;

- Sample ID: 180032 (Debris in soil under fencing line) Chrysotile/Amosite Board.
- Sample ID: 180041 (Debris in spoil heap) Chrysotile Cement.
- Sample ID: 180042(Debris in spoil heap) Cement No asbestos detected.
- Sample ID: 180043 (Debris in Spoil heap) Chrysotile Cement.

Two Material Risk Assessment Reports have also been provided to Arcadis for review for samples 180041 & 180043. The material in both cases was classified as Low Risk within the Material Risk Assessment.

Both reports concluded; "It is likely that this material has been placed on the site from elsewhere and therefore would not necessarily be found at depth. It would be advisable to undertake further ground investigations in the area to quantify the levels present in the spoil heap and whether there has been any migration into the ground below. Ground investigations for asbestos contamination should be designed, undertaken & evaluated by competent specialists who have an appropriate level of geoenvironmental & asbestos qualifications, skills & experience", and recommended that the material should be ultimately "Removed under controlled conditions" & "An assessment needs to be undertaken by a competent person in line with HSE Asbestos Essentials Task Manual Sheet A0 each time works are required."

It should be noted that Arcadis has not been provided with the Material Risk Assessment for sample 180032 – which is likely to report higher risk material, as Chrysotile/Amosite Board tends to be more friable and ready to release fibres.

The Lab Reports and the Material Risk Assessment Reports as provided by PCC are also included within Appendix H.

Arcadis consequently undertook 8no hand dug pits (HTP01-HTP08) to de-lineate the asbestos findings of Middlemarch. No visual identifications of asbestos were made during the hand pitting investigation, and laboratory testing of 8 samples did not indicate the presence of asbestos.

Therefore, the previously identified asbestos within samples 180032, 180041 and 180043 appears to be localised, and asbestos does not appear to widespread throughout the stockpiled material. Although the sampling frequency is considered moderate there is still potential for asbestos to be present within the Stockpiles which was not identified.

As per the recommendations within the Material Risk Assessments, it would be prudent to remove and dispose of the impacted stockpiles to an appropriate waste disposal facility in accordance with current legislation duty of care requirements. As part of these works, it is recommended that appropriate health and safety and necessary mitigation measures are implemented to reduce any risks associated with materials potentially containing asbestos.

During the excavation of the stockpiles, a competent person, appointed by the Principal Contractor, will inspect the excavated arising for visible signs of asbestos. Should asbestos be observed during any excavations, quantification testing would be required to determine whether presence of asbestos at visible concentrations would classify the soil as hazardous for the purposes of off-site disposal.

It should be noted that the asbestos was only encountered during excavation works, and the site in its current undisturbed condition poses no significant risk to site operatives or the wider public from asbestos fibres. All detections of asbestos were located below ground level, and as such no contamination pathway between the source and receptor is present. Only once ground is broken during enabling and construction works would a feasible inhalation pathway be present.

7.4 Controlled Waters Risk Assessment

7.4.1 Water Quality Standards

One round of groundwater sampling was undertaken on 30th January 2019 from the deep standpipes installed from BH101 to BH106.

To assess the risk to controlled waters, the chemical testing results have been compared against appropriate Water Quality Standards (WQS). The WQS comprise Environmental Quality Standards (EQS) from the Water Framework Directive (Ref 13) which are considered to be protective of surface waters, and UK Drinking Water Standards (DWS) from the Water Supply Water Quality Regulations (Ref 14) which are considered to be protective of the underlying Secondary B Aquifer.

The EQS for copper, zinc and nickel are based on bioavailability. Site specific Predicted No Effect Concentrations (PNEC) have been calculated for copper, zinc and nickel based on the minimum measured concentration of calcium (88mg/l), minimum pH of 6.8 pH units and dissolved organic carbon of 1.29mg/l as a conservative (worst case) approach. The approach used is set out in the Water Framework Directive UK Technical Advisory Group guidance, Metal Bioavailability Assessment Tool (Ref 15).

There are no standard guideline values for TPH in groundwater in the UK. In the absence of a specific standard, $10 \mu g/l$ is considered to be a reasonable point of reference at which TPH could be of interest (former UK Drinking Water Standard).

The nearest surface water features are Reservoir and associated drainage around the Site <50m northeast, south-east, south and north-west of the Site and a significant surface water feature is the River Severn located 250m north east from site.

Based on the topography of the Site within a valley and the location of surface water features, it is considered that the direction of hydraulic gradient is likely to be south-east and north-west towards the depression of the valley. Also, one groundwater abstraction licence approximately 360.0m south west of the Site.

The groundwater chemical data is presented in Appendix H.

7.4.2 Groundwater Testing

Groundwater sampling was undertaken on the 30th January 2019 from all six boreholes. All samples collected was scheduled and screened against appropriate Environmental Quality Standards (EQS) and Drinking Water Quality (DWS).

7.4.2.1 Polycyclic Aromatic Hydrocarbons (PAHs) & Phenols

Six groundwater samples were tested for PAHs and phenols. The concentrations of PAHs and phenols were returned below the laboratory limit of detection in all samples analysed. These are therefore not considered to be contaminants of concern, based on one round of analysis.

7.4.2.2 Metals

Six groundwater samples were analysed for heavy metals. Exceedances recorded against the WQS have been tabulated within Table 7.1.

Determinant	EQS (µg/l)	DWS (µg/l)	Number of exceedances	Locations	Samples exceeding EQS/ DWS
Copper	1	2000	6	BH101 (2.8 μg/l) BH102 (2.8 μg/l) BH103 (3.2 μg/l) BH104 (2.9 μg/l) BH105 (2.7 μg/l)	EQS
				BH106 (3.3 µg/l)	
Nickel	4	20	2	BH102 (12.0 μg/l) BH106 (4.1μg/l)	EQS

Table 7.1 – Exceedances of WQS in groundwater samples

A number of marginal groundwater exceedance for heavy metals were recorded against the stringent EQS criteria, including Copper and Nickel. The conservative Predicted No Effect Concentration (PNEC) calculated for copper is $3.96 \mu g/l$, and for Nickel is 12.59 ug/l, therefore when considering the bioavailability of the metals, no exceedances are recorded.

7.4.2.3 BTEX and Total Petroleum Hydrocarbons

Six groundwater samples were tested for BTEX and TPHCWG. The concentrations were all returned below the laboratory limit of detection in all samples analysed. These are therefore not considered to be contaminants of concern, based on one round of analysis.

7.5 Ground Gas Risk Assessment

Four rounds of ground gas monitoring data undertaken on the 22nd and 31st January 2019, 7th and 14th February 2019 by Arcadis.

Concentrations of methane (CH4), carbon dioxide (CO2) and oxygen (O2) in % v/v and gas flow in litres per hour (I/h), and hydrogen sulphide (H2S) and Carbon Monoxide (CO) in parts per million (ppm) were taken during the visit. The groundwater levels were also measured.

Atmospheric pressure can impact ground gas flow. According to CIRIA C665 Assessing the risks posed by hazardous ground gases to buildings (Ref 16) "at falling pressure increased emission rates occur as the gas increases in volume. Rising pressure causes air to flow into the ground, diluting soil gas concentrations. The rate of change in barometric pressure is also important. A swift drop over a small range has the potential to release a greater concentration of gas than a gradual drop over a greater pressure range". Atmospheric pressure data for the monitoring period was obtained from the Met Office Weather Observation Data website (Ref 19). The data was obtained from a monitoring station at Woodhouse Station, Harmon, located approximately 25 km south west of the site. Atmospheric pressure graphs corresponding to the monitoring rounds are shown in Appendix F.

A summary of the atmospheric pressure conditions for each monitoring round is as follows.

- 22nd January 2019: Medium and falling atmospheric pressure (1005 995 mb)
- 30th January 2019: Low and falling atmospheric pressure (995 992 mb)
- 7th February 2019: Low and rising atmospheric pressure (995 1005 mb)
- 14th February 2019: High and falling atmospheric pressure (1029 1026 mb)

7.5.1 General

Hydrocarbon vapour was assessed via Photo Ionisation Detection (PID) analysis of the soils during the site investigation and were recorded between <1 ppm. These levels are not at a level which is considered to pose a significant risk.

During the monitoring visits zero or very low negative rates of flow were measured in the monitoring wells. For the purposes of the assessment a flow rate of 0.1 l/h has been used where flow rates were recorded as zero. The exploratory holes encountered little or no putrescible materials within the Made Ground.

7.5.2 Gas Monitoring Results

Concentrations of carbon dioxide up to 5.60% v/v were recorded and a maximum concentration of methane of 0.80% v/v was recorded.

7.5.3 Ground Gas Assessment

A ground gas risk assessment has been undertaken to evaluate the risk posed to potential receptors of the proposed commercial development.

BS 8485(2019) +A1 guidance (*Assessing risk posed by hazardous gases to buildings*) (Ref. 17) has been used to inform the ground gas assessment.

The Q_{hg} is calculated using the following equation:

Q_{hg} = borehole flow rate (I/h) x gas concentration (%v)/100

The following parameters have been used in the equation:

CH₄ (max recorded concentration) = 0.8 % v/v

 CO_2 (max recorded concentration) = 5.6 % v/v

Flow Rate (max steady flow rate) 0.1 l/hr

 $Q_{hg} CH_4: 0.8/100 \times 0.1 = 0.0008 - CS1 Low risk$

Q_{hg} CO₂: 5.6/100 x 0.1 = 0.0056 - CS1 Low Risk

With reference to BS8485 Code of Practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings (Ref. 17), the calculated Q_{hg} fall into the CS1 'very low risk' category.

Arcadis notes that 2 of the 6 monitoring wells (BH101 and BH106) were flooded (with groundwater above the level of the slotted response zone) during the post fieldwork monitoring period. Arcadis believes that the data obtained from the other wells during the monitoring period provides a sufficient dataset for the purpose of the proposed development, combined with the absence of significant ground gas sources (e.g. landfill material), and therefore the conclusions of the ground gas risk assessment detailed below are consistent with the CSM i.e. no ground gas source.

No elevated concentrations of Methane were recorded at the site above the CS1/CS2 threshold of 1.0% v/v.

Elevated concentrations of Carbon Dioxide were recorded at the site above the CS1/CS2 threshold of 5%v/v during a single monitoring visit on 14/02/2019 during a period of falling atmospheric pressure (although it should be noted that no elevated flow rates have been recorded at the site).

With reference to BS 8485 *Code of Practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings* (Ref. 17), if a carbon dioxide concentration greater than 5% v/v is encountered, consideration should be given to assigning a CS2 classification. In this instance, there is not considered to be source of ground gas such as landfill or waste on site, the 5% limit for carbon dioxide was only exceeded in one borehole (BH102) and the steady measured gas flow was low. Therefore, a **CS1- very low risk** is considered to be more appropriate.

No protective measures are therefore considered to be required for carbon dioxide and methane.

7.5.4 Radon

The site is located within a medium probability radon area (5 to 10% of homes are estimated to be at or above the action level). It is recommended that the level of protection required is confirmed with the Local Authority Building Control Department, and that will depend on the design of any structures and buildings including the inherent ventilation, it is likely that basic redon protection measures will be required. The BRE211 (2015) guidance document includes guidance on how the measures should be designed and what factors should be considered. It is recommended that a radon assessment is undertaken within the site to provide site specific information, which could potentially reduce the risk to the proposed development.

8 ENVIRONMENTAL RISK ASSESSMENT

Based on the assessment of soil, groundwater and gas monitoring data, the potential contaminant linkages identified in the Phase 1 Desk Study have been updated in accordance with CIRIA Guidance C552 (Ref 18), identifying the 'contaminant linkages' (contaminant source-pathway-receptor relationships) that may be present at the site based upon the laboratory analysis and monitoring completed.

8.1 Methodology

Risk assessment is the process of collating known information on a hazard or set of hazards (to determine the potential severity of any impact) along with details on the likelihood of impact on detailed receptors. Risks are generally managed by isolating the sensitive receptor or by intercepting or interrupting the exposure pathway, thus no pollutant linkages are formed and there is no risk. The following risk assessment focuses on the potential contaminants identified on the site in the context of the proposed development of the site.

CIRIA guidance C552 (Ref 18) states that the designation of risk is based upon a consideration of both:

- The likelihood of an event (probability) (considers both the presence of the hazard and the receptor and the integrity of the pathway).
- The severity of the potential consequence (considers both the potential severity of the hazard and the sensitivity of the receptor).

Under such a classification system the following categorisation of risk has been developed and the terminology adopted presented in Table 8.1.

Term	Description
Very High Risk	There is a high probability that significant harm could arise to a designated receptor from an identified hazard at the site without appropriate remedial action or there is evidence that significant harm to a designated receptor is already occurring.
High Risk	Harm is likely to arise to a designated receptor from an identified hazard at the site without appropriate remedial action. Remediation works may be necessary in the short-term and are likely over the longer term.
Moderate Risk	It is possible that harm could arise to a designated receptor from an identified hazard. However, it is either relatively unlikely that any such harm would be severe or if any harm were to occur it is more likely that such harm would be relatively mild. Some remediation work may be required in the longer term.
Low Risk	It is possible that harm could arise to a designated receptor from an identified hazard, but it is likely, at worst, that this harm if realised would normally be mild. Any subsequent remediation works are likely to be relatively limited.
Very Low Risk	It is a low possibility that harm could arise to a receptor, but it is likely at worst, that this harm if realised would normally be mild or minor.

Table 8.1 - Summary of risk likelihood classification categories

*Further risk assessment information is attached in Appendix J

8.2 Contaminant Sources

The following determinants have been identified as contaminants of concern:

- **Radon** The site is located within a medium probability radon area (5% to 10% of homes are estimated to be at or above the action level).
- Sulphates Design Sulphate Class (DS) of DS-1 and an Aggressive Chemical Environment for Concrete Class (AC) of AC- 1.
- **Asbestos** Asbestos was detected within 3 sampling locations during the Middlemarch ecological works, within stockpiles located adjacent to the northwest boundary.

8.3 Summary of Potential Contaminant Sources

Following the preliminary CSM originally developed in the desk study report for the site (Ref 1) and based on the results of the ground investigation the conceptual site model can now be refined as detailed in Table 8.2.

8.4 Contaminant Linkages – Conceptual Model

The conceptual site model has been derived from the sources identified from the site investigation and assessment and the identified receptors and pathways.

Table 8.2 provides an assessment of each identified contaminant linkage (CL) to establish the potential risk to the sensitive receptors. The proposed development to commercial dwellings has been taken into consideration and the risk assessment has been developed based on this specific redevelopment and land use scenario.

Table 8.2 – Contaminant Linkages

PL No.	Source	Receptor	Pathway	Hazard Severity	Likelihood	Potential Risk and Mitigated Risk	Mitigation/ remedial action or further assessment
PL1	Radon	Human health site end users	Accumulation of ground gas in some areas	Medium	Low likelihood Radon reduced to unlikely with mitigation with basic protection as detailed in BRE211.	Low Reduced to very low risk with mitigation that is likely to be inherent in the design and form of the buildings itself.	Discussions should be held with the Powys County Council Building Control and Contaminated Land Officers. Further site-specific radon assessment may reduce the risk further.
PL2	Sulphates and pH in soils	Buildings, foundations and buried service structures	Direct contact	Mild	Low likelihood Reduced to very low with mitigation	Low Reduced to very low with mitigation.	Appropriate design of concrete to DS-1 and AC-1.
PL3	Asbestos in stockpiles	Human Beings Site users	Inhalation of airborne fibres	Severe	Low likelihood The risk from asbestos exposure is considered to only apply during the construction phase. The site in its current condition poses no significant risk to site operatives or the wider public from asbestos fibres. All detections of asbestos were made during ecological excavation works.	Low/Very Low	Enabling and construction works within the affected areas will be completed according to an Asbestos Management Plan, to ensure minimal risk to site operatives, members of the public and future site users. Impacted stockpiles are to be removed to an appropriate waste disposal facility. No pollutant linkage will remain once this is done.

8.5 Summary of Contaminant Linkages

Contaminant linkages have been assessed for the site as detailed in Table 8.2.

Asbestos has been detected within the 3 samples obtained during the Middlemarch ecological works from stockpiles along the north-western boundary area onsite, with the site in its current state the risk from the inhalation of asbestos fibres is low, a credible exposure pathway becomes viable when construction and enabling works commence. After offsite removal the contamination pathway (inhalation) between the source and the receptor will be severed.

The chosen Principal Contractor should assess the asbestos risk to the construction workers and future operational staff. As per the Material Risk Assessments provided to Arcadis, it would be prudent to remove and dispose of impacted stockpiles to an appropriate waste disposal facility in accordance with current legislation duty of care requirements. As part of these construction works to manage the risk to site users, visitors and the wider public, appropriate health and safety and necessary mitigation measures will be implemented to reduce any risks associated with materials potentially containing asbestos, this may include selective removal or hand picking of significant pieces of asbestos for offsite disposal.

Sulphates and pH in the ground are considered likely to present a low risk to buildings providing appropriate design of concrete of AC-1 and design sulphate class DS-1.

The site is located within a medium probability radon area (5 to 10% of homes are estimated to be at or above the action level). It is recommended that the level of protection required is confirmed with the Local Authority Building Control Department, and that will depend on the design of any structures and buildings including the inherent ventilation, it is likely that basic redon protection measures will be required. The BRE211 (2015) guidance document includes guidance on how the measures should be designed and what factors should be considered. It is recommended that a radon assessment is undertaken within the site to provide site specific information, which could potentially reduce the risk to the proposed development.

9 WASTE ASSESSMENT

9.1 HazWaste Online

EU Directives, UK Government policy and regulations require that construction waste to landfill is minimised. Where possible (of benefit to the planned development) all excavation arisings as a result of the proposed development should be re-used onsite as either engineering fill or landscaping fill. To comply with current legislation and regulations any re-use of excavated materials within the site could be undertaken via either of two routes – Environmental Permitting (formerly Waste Exemptions); or in accordance with the CL:AIRE Definition of Waste: Development Industry Code of Practice. Whichever route is chosen soils must be proved certain to be used and demonstrated to be "suitable for use" in the area to be deposited. A Materials Management Plan (or method statement) should be produced during the design phase for the scheme.

Should the excavated material not be required or be physically or chemically unsuitable for use as backfill or as other engineering fill within the site, the excess material would be Waste and will need to be removed off site. If only disposal to landfill was an option, further Waste Acceptance Criteria (WAC) testing and separation of waste for off-site disposal may be required to ensure accurate classification of material to reduce wastes sent to non-hazardous and hazardous landfill. Natural excavated arisings would be classified as inert if segregated from Made Ground materials. Inert waste would be the least expensive for disposal and the material could be more easily reused.

Arisings should be stored in an appropriate manner to prevent leaching of contaminants from the material and with suspected inert, non-hazardous and hazardous material stored separately where appropriate to avoid cross contamination.

Under European Council Directive (91/689/EC), known as the Hazardous Waste Directive, a list of all wastes, hazardous or otherwise has been compiled known as the European Waste Catalogue (EWC, 1994, Commission Decision 94/3/EC). A revised EWC was released in 2002 under Commission Decision 2000/532/EC. This commission decision has been amended in turn by Commission Decisions 2001/118/EC, 2001/119/EC and 2001/573/EC. The EWC is a catalogue of all wastes, grouped according to generic industry, process or waste type. It differentiates between non-hazardous and hazardous.

9.1.1 Stockpile Samples

The chemical testing results from the 8 stockpile samples represented by HTP01 to HTP08 (Made Ground) were screened using HazWaste online software to determine whether the stockpiles represented by these samples would be suitable for disposal at a non-hazardous or inert landfill site. It is understood that the samples analysed are representative of the whole stockpiles.

The List of Wastes Code used in the assessment was 17.05.04; soils and stones other than those mentioned in 17.05.03 (for non-hazardous material), whilst the code for hazardous material would be 17.05.03.

The initial screen of the results indicated that 3 of the samples could be potentially hazardous due to the concentration of sum TPH C6-C40 (16 - 35 mg/kg) which exceeded the concentration threshold for HP3

Flammable. However, this classification has been revised to non-hazardous with regard to TPH as the concentration of sum TPH required to be flammable in soil is >1000 mg/kg and no evidence of free phase hydrocarbon product was identified on the exploratory hole logs. Where a substance has a HP3 classification, it is assumed that enough material is present for ignition to occur, i.e. that the chemical is in its raw from, not within the soil matrix. In the case of soils, ignition is unlikely at concentrations <1000 mg/kg. However, this would need to be confirmed by the operator of the landfill where the waste is intended to be taken.

The 8 samples were therefore classified as non-hazardous based on the determinants analysed.

Waste Acceptance Criteria (WAC) testing should be undertaken on arisings represented by samples of nonhazardous waste to inform the potential disposal options; either at a non-hazardous or inert landfill site.

It should be noted that the landfill operator may undertake a visual inspection of the arisings at the site entrance and may require further testing prior to acceptance of the waste should the visual appearance of the waste differ from the written description of the waste (included on the exploratory hole logs within Appendix D).

It should be noted that the Arcadis testing did not identify the presence of Asbestos. Asbestos has been identified onsite during the Middlemarch ecological works, and its presence may lead to a potentially hazardous classification.

9.1.2 Borehole and Trial Pit Samples

8 samples of natural soil from Trial pits TP101 – TP104 in the south western part of the site were screened using HazWaste Online software to determine whether any excavated materials would be likely to be classified as hazardous or non-hazardous waste, if they were to require offsite disposal as waste.

The List of Wastes Code used in the assessment was 17.05.04; soils and stones other than those mentioned in 17.05.03 (for non-hazardous material), whilst the code for hazardous material would be 17.05.03.

The initial screen of the results indicated that 2 of the samples (TP102 0.0-0.2 m bgl and TP103 0.0-0.3 m bgl) could be potentially hazardous due to the concentration of sum TPH C6-C40 (11 - 14mg/kg) which exceeded the concentration threshold for HP3 Flammable. However, this classification has been revised to non-hazardous with regard to TPH as the concentration required to be flammable in soil is >1000 mg/kg and no evidence of free phase hydrocarbon product was identified on the exploratory hole logs.

The 8 samples were therefore classified as non-hazardous based on the determinants analysed. WAC testing should be undertaken on arisings represented by samples of non-hazardous waste to inform the potential disposal options; either at a non-hazardous or inert landfill site.

In order to secure disposal at a landfill site, a waste management facility may require testing of the actual material that is to be disposed of offsite prior to acceptance. There is no obligation on a landfill operator to accept the waste.

The results of the hazwaste assessment are attached as Appendix I.

9.2 Estimated Waste Volumes

Table 9.1 presents the estimated volumes of the stockpiles situated along the northern boundary of the site. The piles have been assessed as 4 piles for the purposes of the calculations as shown on Figure 9.1 below. The volume calculations do not take account of bulking upon excavation. There are other piles of waste that have not been sampled nor estimates of their volumes made (Plate 1).

Figure 9.1 - Locations of Stockpiles

Table 9.1 - Estimated Waste Volumes

ID	Length (m)	Width (m)	Height (m)	Estimate of Volume (m³)	Approx. Shape	Description	Associated Samples
1	15	2	0.5	23.55	half cylinder (narrower at one end and wider at the other)	fill material, which includes roadstone and concrete slabs (Plates 2 and 3)	HTP05, 07 and 08
2	30	3	1.2	105.98	half cylinder	predominantly what looks like natural CLAY (Plates 4 and 5)	HTP01 & HTP02
3	15	3	1.2	52.99	half cylinder	mix of clay with old bitumen seal, roadstone and brick (Plates 6 and 7)	HTP03 & HTP04
4	5	5	1.5	12.50	square based pyramid	topsoil mixed with burnt plastic, glass, roadstone, metal and lots of other stuff (Plates 8 and 9)	HTP06

Plate 4

Plate 5

Plate 6

Plate 7

Plate 8

Plate 9

10 CONCLUSIONS AND RECOMMENDATIONS

A ground investigation was undertaken to target potential areas of concern highlighted within the Arcadis Desk Study Report (Ref 1). The purpose of this report is to interpret the ground investigation data and to assess the nature and extent of any contamination on the existing site, in order to determine the potential risk to the site / users. This is in support of the planning condition for business units and a recycling bulking facility at Abermule Business Park.

10.1 Geo-Environmental Conclusions

No evidence of widespread significant contamination was identified, and specific remedial actions are not considered to be necessary to the entire site. The primary concern relates to 3 asbestos identifications made during the Middlemarch ecological works.

- <u>Soil Samples</u> Samples recovered from Made Ground and Natural superficial deposits did not show any elevations against their respective screening values for the commercial/industrial end-use.
- <u>Asbestos</u> Asbestos has been identified within Made Ground Deposits within the stockpiles and poses a potential risk to construction workers and other site users during the construction phase. It is proposed to remove the impacted stockpiles to an appropriate waste disposal facility. Once removed offsite the contamination pathway is severed and no further remedial action will be required.

An Asbestos Management Plan will be developed by the chosen Principal Contractor and their Specialist Sub-Contractor(s) thus enabling the construction work to be completed to with the minimum risk to workers health. The Plan will include mitigation measures to ensure minimal risk to site operatives, members of the public and future site users. The agreed remediation activity will be undertaken by a specialist contractor under the overall supervision of the chosen Principal Contractor. Documentary evidence of any asbestos removed will be provided in the form of contemporaneous records, including proof of appropriate off-site disposal. The documentary evidence will again be presented within A Remediation Verification report.

- <u>Ground Gas</u> Based on the calculated GSVs for the ground gas monitoring data, the site is classified as CS1. No special measures are deemed necessary for the proposed development.
- <u>Radon</u> The site is located within a medium probability radon area (5% to 10% of homes are estimated to be at or above the action level). It is recommended that the level of protection required is confirmed with the Local Authority Building Control Department, it is likely that basic protection measures will be required. It is recommended that a radon assessment is undertaken within the site to provide site specific information, which could potentially reduce the risk to the proposed development.
- Groundwater No groundwater contaminants of concern were recorded within the samples.
- <u>Waste</u> 8 Stockpile samples (Made Ground) and 8 Borehole and Trial pit samples (natural soil samples) were screened for hazwaste online. All samples tested were consistent with a classification

of non-hazardous – it should be noted that Arcadis testing did not identify asbestos – the presence of asbestos may lead to a potentially hazardous classification.

10.2 Geotechnical Conclusions

- <u>Ground Conditions</u> Ground conditions across the site were variable comprising limited Made Ground of both cohesive and granular deposits to the north west of the site up to 0.40m thick overlying variable amount of sandy gravelly silt and sandy gravelly clay to a depth of 4m and sandy clayey gravel and gravelly sand to a depth of 10m. Bedrock (Nantglyn Flags Formation) is recovered as weak dark grey mudstone in tow boreholes.
- <u>Groundwater</u> Groundwater strikes in the boreholes were noted at 3m and 8.5m within the granular superficial deposit and bedrock. The post fieldwork monitoring of the groundwater levels was consistent with the readings taken during the site investigation. The levels ranged from 2.71m to 4.30m over all three monitoring rounds. Higher groundwater can be anticipated, particularly after wet periods and flood events.
- <u>Excavations</u> It is likely that the majority of the overlying Made Ground and superficial cohesive deposits could be excavated using a conventional backhoe excavator. Due to the presence of variable superficial deposits in places, some temporary support or battering back may be required for deep excavations. Groundwater entry will likely occur and hence dewatering methods will be required for deeper excavations.
- <u>Foundations</u> Made Ground soils are not considered to be a suitable founding stratum. The underlying Alluvium Fan Deposits and Bedrock of Nantglyn Flags Formation Member recorded a number of SPT N-Value values ranging from 11 to >50 at depths ranging from 1.20m bgl to 10.00m bgl. The superficial deposits are noted to be laterally variable, and as such a consistent founding stratum should be targeted. The chosen foundation solution should target the underlying Gravel within the Alluvial Fan Deposits or the Nantglyn Flags Formation Member at depth.

A number of foundation solutions are deemed viable, including traditional foundations, vibro-stone columns or mini piles for higher loadings, or to overcome constraints due to the variation in depth that the Gravel within the Alluvial Fan deposits are encountered across the development area.

Plot specific investigation, based on final layout and building types is recommended to aid selection of the appropriate foundation and ground slab configuration.

- <u>Concrete Classification</u> Below ground concrete should be designed to meet the specifications of DS-1, AC-1.
- <u>Soakaway Testing</u> Soakage conditions are highly variable. Clay and clayey granular deposits recoded very poor soakage and are unsuitable. Based upon the test data it may be possible for drainage systems to be implemented within the gravels. However, as shown parts of the site would

not be acceptable in the more impermeable cohesive deposits present. Further testing is recommended, and discussions held with NRW and the Local Authority drainage team. Additional testing has been undertaken and will be reported as an addendum.

11 REFERENCES

- 1.) Arcadis Consulting, Abermule Business Park. Phase 1 Geo-Environmental Desk Study, December 2017. 0001-UA006590-26-UP32R-01.
- 2.) BS EN 1997-2. 2007. *Incorporating corrigendum June 2010.* Eurocode 7: Geotechnical Design. Part 2 Ground Investigation and testing. British Standards Institution.
- 3.) BS 5930. 2015. Code of practice for ground investigations. British Standards Institution.
- 4.) BS 10175+A2. 2017. Investigation of potentially contaminated sites Code of practice. British Standards Institution.
- 5.) Building Research Establishment. 2016. Soakaway Design. BRE Digest DG365. BRE, Watford.
- BS 1377. 1990. Method of test for soils for civil engineering purposes. Published in 9 Parts. British Standards Institution.
- 7.) NHBC Standards, 2011. Part 4 Foundations.
- 8.) Stroud and Butler 1975. The Standard Penetration Test and the Engineering Properties of Glacial Materials, 1975 Conf. of the Midlands Geotechnical Society.
- 9.) Peck, Hansen and Thornburn, Foundation Engineering, Wiley, 2nd ed., 1974.
- 10.)BRE Special Digest, 2005. Concrete in aggressive ground, Special Digest 1:2005, 3rd Edition, The Concrete Centre, BRE Construction Division.
- 11.)Land Quality Management/ Chartered Institute of Environmental Health S4ULs for Human Health Risk Assessment, Land Quality Press, Nottingham. "Copyright Land Quality Management Limited reproduced with permission; Publication Number S4UL3223. All rights reserved.
- 12.)Contaminated Land: Applications in Real Environments (CL:AIRE), 2014. Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination - SP1010.
- 13.) The Water Framework Directive (Standards and Classification) Directions (England and Wales) 2015.
- 14.) The Water Supply (Water Quality) Regulations 2016. SI 2016/614.
- 15.)Water Framework Directive UK Technical Advisory Group, River and Lake Assessment Method, Specific Pollutants (Metals) Metal Bioavailability Assessment Tool (M-BAT). July 2014.
- 16.) CIRIA C665. Assessing the risks posed by hazardous ground gases to buildings. 2005.
- 17.)British Standard BS8485:2019+A1. Code of Practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings.
- 18.) CIRIA C552 Contaminated Land Risk Assessment A guide to good practice. 2001.
- 19.)The Met Office Weather Observation Data. Surface Pressure Data [online]. Available at: https://wow.metoffice.gov.uk Accessed March 2019.

APPENDIX A

Proposed Development Plan Site Location Plan Existing Site Layout

This drawing should not be scaled and any dimensions verified on site. All dimensions are in millimetres unless otherwise stated All dimensions are in millimetres unless otherwise stated CWIC is the Central Wales Infrastucture Collaboration project between Powys County Council and Ceredigion County Council and all copyrights are vested in each respective Authority. This drawing is the property of CWIC Engineering Design Services and is issued on the condition that it is not copied, reproduced, retained or disclosed to any unauthorised person, either wholly or in part without the consent in writing of CWIC Engineering Design Services. © Hawlfraint y Goron a hawliau cronfa ddata 2017 Arolwg Ordnans 100024419 (Cyngor Sir Ceredigion) & 100025371 (Cyngor Sir Powys) © Crown copyright and database rights 2017 Ordnance Survey 100024419 (Ceredigion County Council) & 100025371 (Powys County Council)

Notes

1) Development to be in accordance with Abermule Business Park Development, Phasing Plan.

ISSUED FOR PLANNING

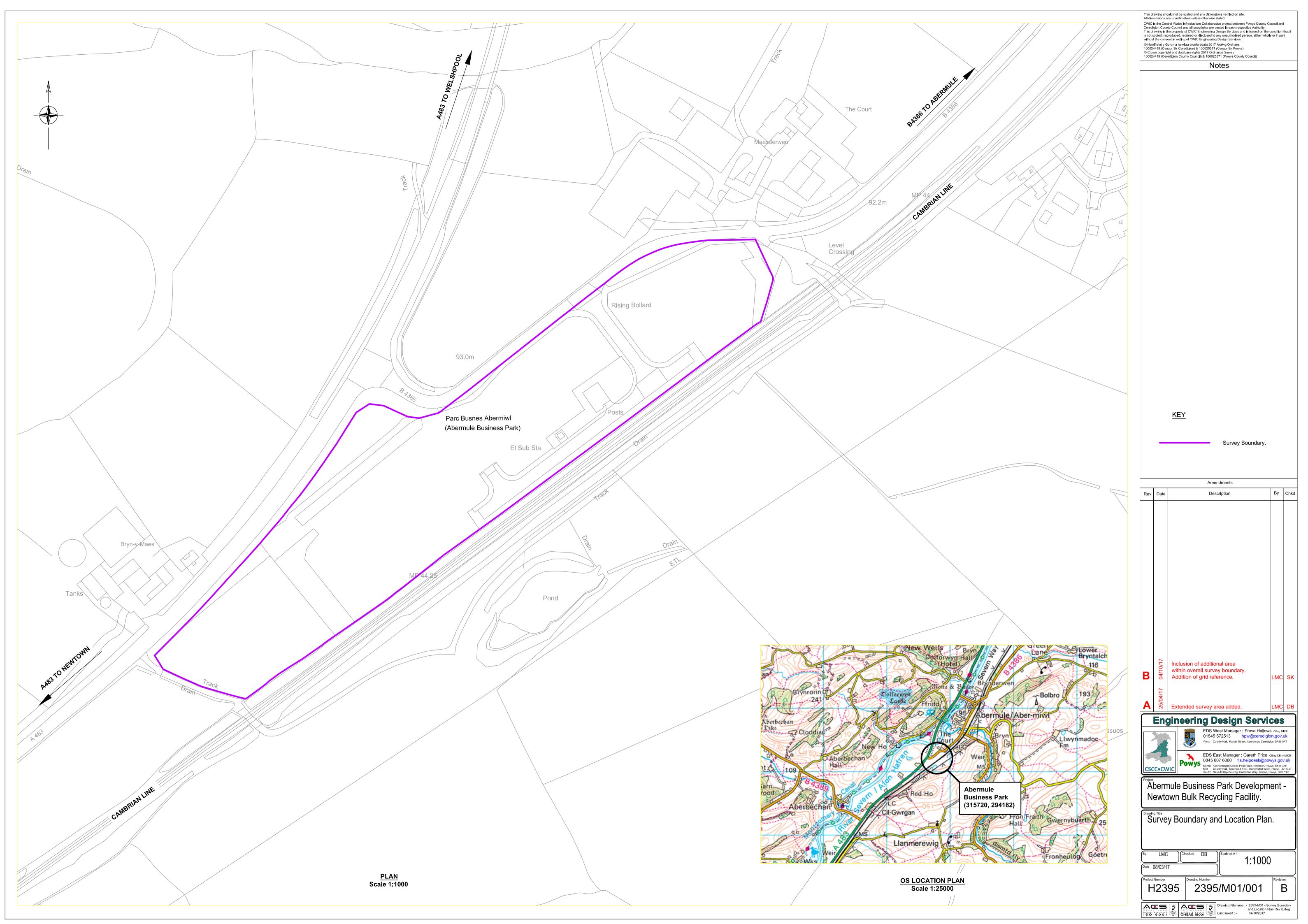
<u>KEY</u>

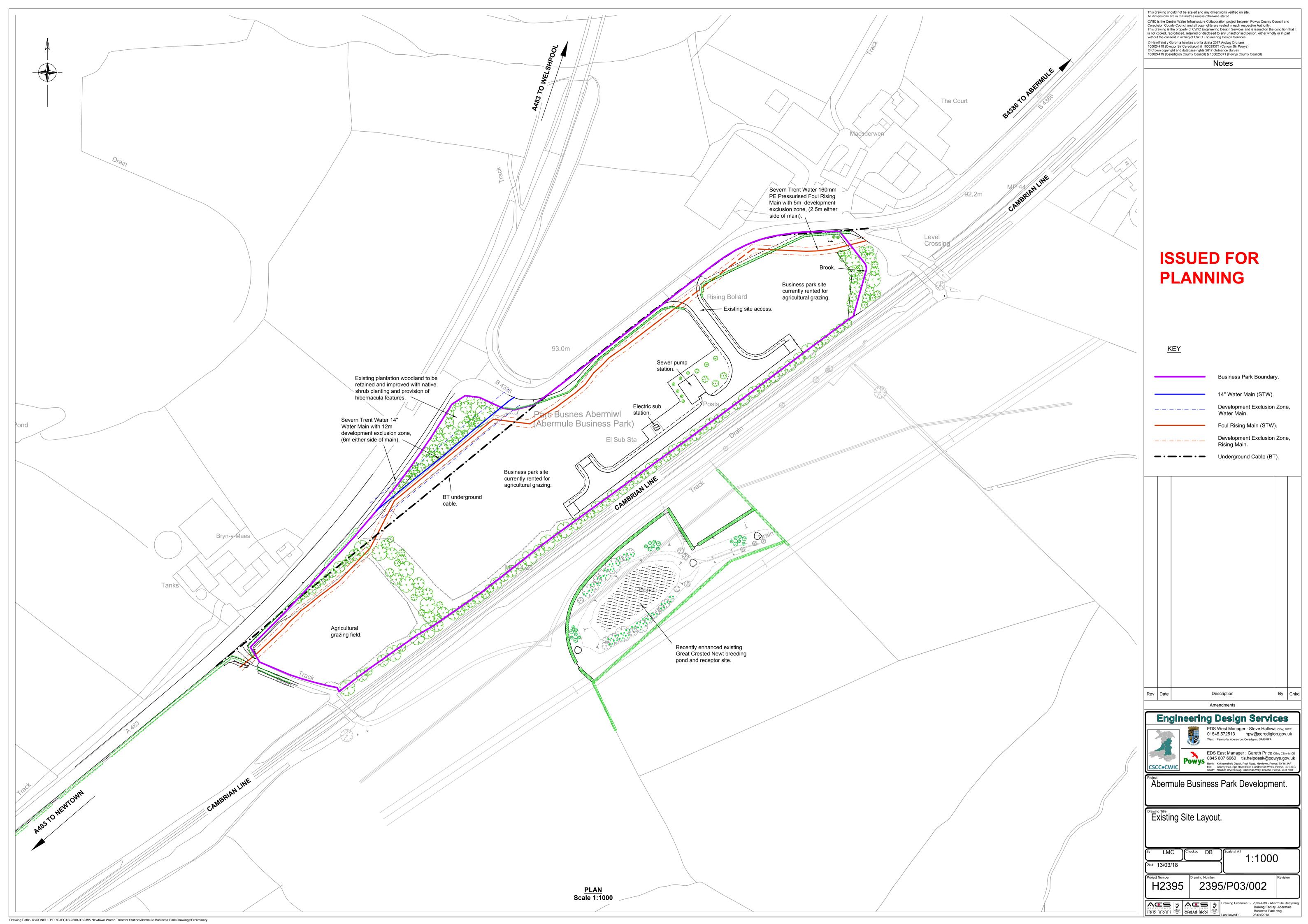
Business Park Boundary.

Additional palisade fence adjacent to railway. Addition of Note Re phasing plan. By Chkd Description Amendments

Engineering Design Services EDS West Manager : Steve Hallows CEng MICE 01545 572513 hpw@ceredigion.gov.uk West: Penmorfa, Aberaeron, Ceredigion, SA46 0PA EDS East Manager : Gareth Price cEng CEnv MICE 0845 607 6060 tls.helpdesk@powys.gov.uk North: Kirkhamsfield Depot, Pool Road, Newtown, Powys, SY16 3AF Mid: County Hall, Spa Road East, Llandrindod Wells, Powys, LD1 5LG South: Neuadd Brycheiniog, Cambrian Way, Brecon, Powys, LD3 7HR

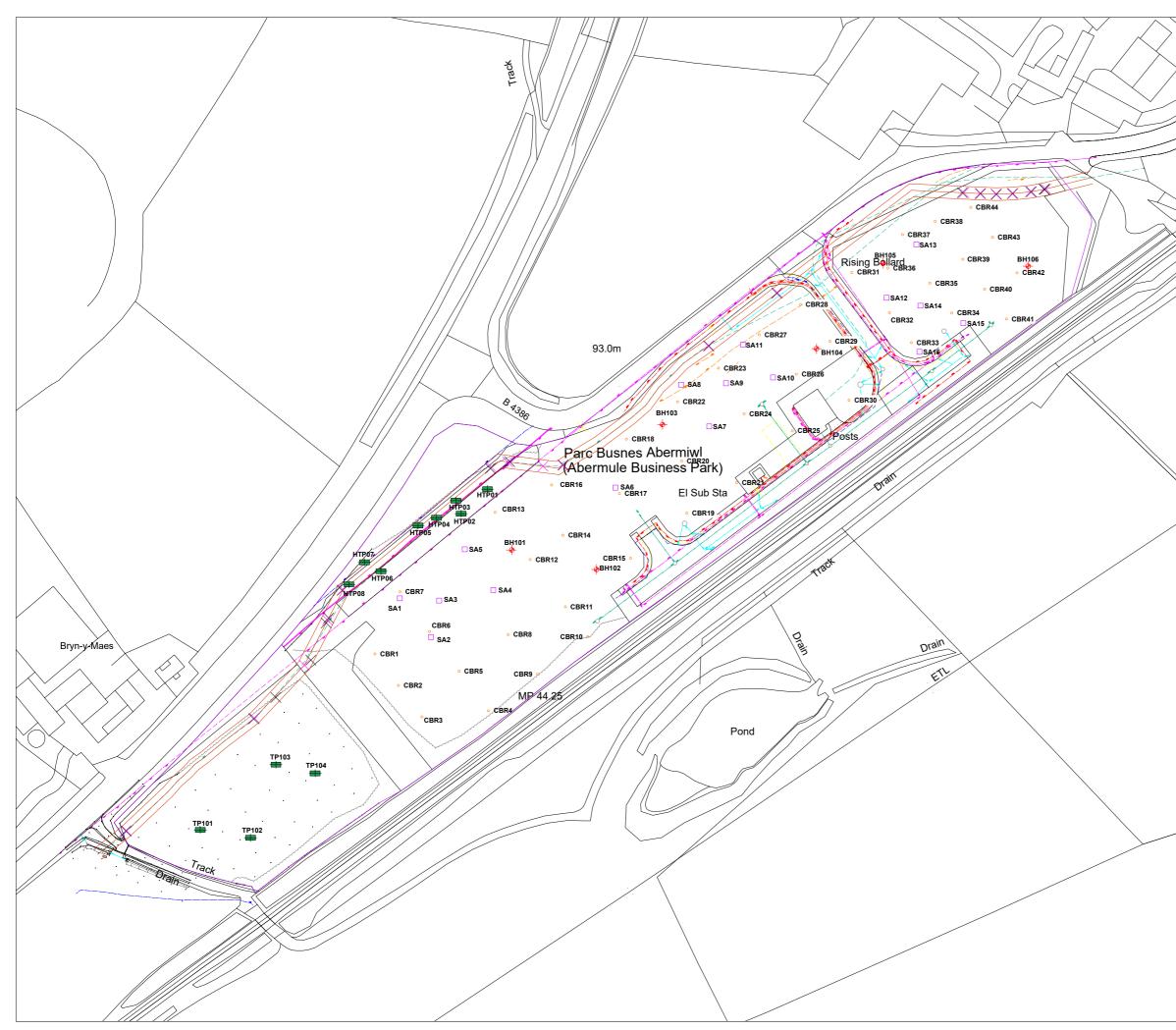
Abermule Business Park Development.


Proposed Site Layout - Business Park.


DB

awing Numbe 2395/P03/003 Α

 Image: Constraints of the constraints o


1:1000

APPENDIX B

Exploratory Hole Location Plan

Existing Rising Main Site Boundary I. COR CBR Test Location I. COR CBR Test Location IIII B Boendare IIII T Trial PR IIII T Trial PR IIII DEBET IIII DEBET IIIII DEBET IIIII DEBET IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII]
Image: No. Revision/Issue Drawn Checked Date Image: No. Revision/Issue Drawn Checked Date Powys County Hall Spa Road East Llandrindod Wells Powys LD 15LG http://www.powys.gov.uk/ Project ABERMULE BUSINESS PARK Drawing Title EXPLORATORY HOLE PLAN Date Scale Scale Sheet	-	Sit SA Pe CBR CE BH Bo	te Boundary rcolation Te BR Test Loc: prehole ial Pit	est Location			
Image: No. Revision/Issue Drawn Checked Date Powys Date Drawn Checked Date Powys County Hall Spa Road East Liandrindod Wells Powys D1 5LG http://www.powys.gov.uk/ Project ABERMULE BUSINESS PARK Drawing Title EXPLORATORY HOLE PLAN Date Scale Sheet							
Image: No. Revision/Issue Drawn Checked Date Powys Date Powys County Hall Spa Road East Liandrindod Wells Powys LD1 5LG http://www.powys.gov.uk/ Project ABERMULE BUSINESS PARK Drawing Title EXPLORATORY HOLE PLAN							
Image: No. Revision/Issue Drawn Checked Date Powys Date Powys County Hall Spa Road East Liandrindod Wells Powys LD1 5LG http://www.powys.gov.uk/ Project ABERMULE BUSINESS PARK Drawing Title EXPLORATORY HOLE PLAN							
Project ABERMULE BUSINESS PARK Drawing Tite EXPLORATORY HOLE PLAN	-						
ABERMULE BUSINESS PARK Drawing Title EXPLORATORY HOLE PLAN Date Scale Scale Sheet	P	X OW	ys	Spa Ro Llandrir Powys LD1 5L	ad East ndod Well G	s	x/
EXPLORATORY HOLE PLAN			MULE	E BUSII	NESS	PARI	<
			ORA	TORY	HOLE	PLAI	N

APPENDIX C

Standard Procedures

C0 General Principles

This ground investigation was undertaken in general accordance with the principles of BS EN 1997-1 [1] and BS EN 1997-2 [2] and the advice given in BS5930:2015 [8], which, provides complimentary guidance on the application of the primary standards. Where the requirements of the ground investigation specification differ from these primary standards, the investigation methodology was adapted as required and specific notes regarding methods and techniques employed were made in the appropriate report sections.

C1 Buried Services

Service clearance was undertaken in accordance with Arcadis' Safety, Health and Environment (SHE) Standard – Avoidance of Sub-Surface Hazards and Structures Standard. This document details the methods and safe working practices used to undertake excavations safely. Prior to breaking ground, services plans were consulted, and the area scanned using a Cable Avoidance Tool (CAT) with detected signals marked on the ground. For all investigation positions, other than for machine excavated trial pits, hand excavated inspection pits are completed to 1.20 m bgl prior to the use of drilling and boring plant.

C2 Sampling Requirements

The selection of sample types and sampling techniques has been chosen to take account of the soil fabric, size and quality of sample required based on whether the soils mass properties or the intact material properties of the ground are to be determined in subsequent laboratory tests. BS EN ISO 22475-1 [4] describes three generic sample groups that are:

- a. Sampling by drilling. Generally, a disturbed sample recovered from the drilling tool or digging equipment, typically meeting Class 3 to Class 5 requirements, with the recovered material being stored in bulk bags or sealed jar or tub containers.
- b. Sampling by sampler. Typically referred to as open tube or drive sampling in which a tube with a sharp cutting edge is driven into the ground either by static thrust or dynamically driven to give a relatively undisturbed sample of Class 1 or Class 2 but may result in a Class 3 sample.
- c. Block sampling. Cylindrical large diameter samples or cuboid hand-cut samples usually relatively undisturbed Class 1 and Class 2.

The open-tube sampling equipment used on the site was of a type and design that conformed to BS EN ISO 22475-1. For the purpose of this ground investigation block sampling was not required.

Generally, samples were assessed on site and any unexpected deterioration in sample quality was reported to the ground engineer by the lead drilling technician.

Sufficient and representative samples were taken to allow the geo-mechanical properties of the ground to be adequately characterised and to enable the sequence of soil strata to be described by an engineering geologist or geotechnical engineer.

Where samples have been taken for chemical tests the drilling method attempted to adopt dry drilling over the sampling range that generally was achieved by the use of drill casing to separate and isolate the upper soil layers and exclude groundwater. Cross-contamination was further reduced by regular cleaning of sampling tools. Sample integrity was maintained by sealing samples immediately on collection and storing the samples in a temperature controlled cool box. Samples were despatched from the site at the end of the shift on which they were collected or as required in the project specification. Details of best practice storage, preservation and decontamination measures undertaken are presented in the following table:

Task	Soil	Ground Gas			
Storage	Glass jars and vials supplied by the laboratory were used for the collection of soil samples to be analysed for volatile compounds. Plastic one-litre tubs were used to collect soil samples for metals analysis.	by the laboratory.			
Preservation	Filling of sample containers as far as low storage temperature to minim biodegradation of petroleum hydroca				
Decontamination	Disposable gloves were worn and changed between sample collection to prevent cross-contamination.	Disposable gloves were worn and changed between sample collection to prevent cross contamination.			
Transport	requests were recorded on the lal	e boxes provided by the laboratory. San poratory chain of custody form includ sis. Samples were dispatched to the	ed with samples, prior to		

C3 Sample Description

Sample description was undertaken by the Arcadis site geologist in accordance with BS 5930: 2015. The descriptions of the individual samples were used to identify the sequence of strata at the exploratory hole location and from which representative exploratory hole logs were drawn.

C4 In Situ Testing

In situ geotechnical tests were undertaken taking account of the investigation scope and requirement to attain the appropriate parameters required in the geotechnical design. The tests were undertaken in accordance with the requirements of the relevant parts of BS EN ISO 22476 [5, 6, 7] and other methods as follows:

Dynamic probing

Dynamic probes were undertaken in general accordance with BS EN ISO 22476-2, BS EN 1997-2 and the national annex to BS EN 1997. The tests were generally made using the super-heavy DPSH-B configuration of the apparatus, however, it should be noted that the basis for selection of the type of dynamic probe should be a consideration of the driving energy in relation to the type of ground conditions anticipated at the site.

Where adequate correlation with borehole data is available an interpretation of the estimated soil type may be made, however, it should be noted that probing can give unreliable results in mixed soils.

Standard penetration testing

Standard penetration tests were carried out in accordance with BS EN ISO 22476-3, BS EN 1997-2 and the national Annex to BS EN 1997-2. The test records are presented on the borehole logs as blow counts for each increment with the N-value as the total number of blows of the four main test increments.

Where the N-value exceeds a total of 50 blows, the test reports the penetration in millimetres for the last test increment recorded, and the N value is indicated as greater than 50,

e.g. 4,5/12,14,18, 6 for 10 mm

indicates that the seating blows (4 and 5) were completed and that the test terminated in the 4th increment after penetrating 10 mm.

Where the seating blows exceeded 25 blows for less than 150 mm; the test was stopped, and the rods remarked after which, the main drive was continued. The test is then reported as the number of blows in each seating drive for the recorded penetration with the results of the main drive given as above,

e.g. 14/11 for 45 mm/12,14,16, 8 for 10 mm.

In certain circumstances where groundwater in-flow may affect the test, particularly in fine sand or silt, low SPT blow counts may be recorded. Where the SPT blow count was very low, N values of 5 or less, the test was, at the discretion of the site engineer, continued for a further 300 mm, recording blows for each 75 mm increment. **This is not** a standard penetration test value, it does however give an indication of potential disturbance to the ground.

California Bearing Ratio

In situ California Bearing Ratio (CBR) tests were carried out in general accordance with the requirements of BS 1977-9:1990, 4.3 [10]. The CBR is a strength test that is generally concerned with pavement design and the control of pavement sub grade construction, as such it is a test that is most suited to soils with a maximum particle size not exceeding 20 mm.

TRL Dynamic cone penetrometer

The TRL DCP is a device developed by the TRL to assess the California Bearing Ratio of road sub-base by correlation. As such the device was developed for use in a limited range of soil types. The test has no formal standard the test methodology and its use are discussed in TRL report PR IN 277-04 [11].

C5 Data Transfer Format

The data collated during the ground investigation has been organised and managed using the "AGS data format" that allows data transfer between different disciplines and organisations in accordance with BS 8574 [9].

C6 References

- 1. BS EN 1997-1. 2004. Eurocode 7: Geotechnical Design. Part 1 General Rules. British Standards Institution, 2013 (revised text).
- 2. BS EN 1997-2. 2007. Eurocode 7: Geotechnical Design. Part 2 Ground Investigation and testing. British Standards Institution, 2010 (revised text).
- 3. BS EN ISO 22282-1:2012. Geotechnical investigation and testing Geohydraulic testing. Part 1: General Rules. British Standards Institution.
- 4. BS EN ISO 22475-1. Geotechnical investigation and testing Sampling methods and groundwater measurements Part 1 Technical principles for execution.
- 5. BS EN ISO 22476-1:2015. Geotechnical investigation and testing Field testing Part 1: Electrical cone and piezocone test. British Standards Institution
- 6. BS EN ISO 22476-2. Geotechnical investigation and testing Field testing Part 2: Dynamic Probing. British Standards Institution
- 7. BS EN ISO 22476-3 2005. Geotechnical investigation and testing Field testing Part 3: Standard penetration test. British Standards Institution
- 8. BS 5930: 2015. Code of practice for ground investigation. British Standards Institution.
- 9. BS 8574. Code of practice for the management of geotechnical data for ground engineering projects.
- 10. BS 1377-9. 1990. Methods of test for soils for civil engineering purposes. Part 9: In-situ tests. British Standards Institution.
- TRL. 2004. Dynamic cone penetrometer tests and analysis. TRL Technical Report PR IN 277-04. Transport Research Laboratory, Crowthorne, England.

APPENDIX D

Exploratory Hole Logs Soakaway Results

ARCADIS Percussive Borehole Log

BH101

Project Abermule Business Park Client Powys County Council								10026414 Easting (OS mE) 315670.18	92.03 Northing 29416	(OS mN) 8 74			End	t Date /01/2019 Date /01/2019		50 neet 1	of 1
SAMPLE		Counc		STS		PROGR	ESS	515070.10	STRATA				01/2013				
Depth	Type/	Depth	Type/	Results	Water Strikes	Date Time	Casing		Desc	ription	~			Legend	Depth (Thickness	Level	Inst Bac
00 - 0.50	No. B2	-	No.	recound	- 0)	10/01/2019	Water		el is subangular to subrounded fine to coarse of						-	4.5	
00 - 0.50	ES1	-				08:00		Gravel is subangul	ar to subroun	ded fine	e to coa	arse of s	iltstone.	5112;1	(0.50)	ļ	
	B4 ES3	- 0.50	PID	<1ppm				Dark purplish brow	n and dark gr	eenish g	grey ve	ery claye	ey sandy		0.50	91.53	
50 - 1.20	200	-						subrounded fine to quartz.	coarse GRA	/EL of n	nudstor	ne, silts	tone and	· · · · · ·	*	-	
		-													。 (1.10)	ŧ	
	B6 D5	- 1.20 - 1.20	SPT(S) PID	N=32 (5,5/8,9,8,7) <1ppm										· · · · · ·	* *	-	$\langle \rangle$
		-													1.60	90.43	
		-						Dense dark purplis subangular to subr	ounded fine to	o coarse	GRA	/EL of r	nudstone			50.45	
	B8	- 2.00	SPT(S)	N=47 (4,9/9,12,14,12)				and siltstone with le subrounded of silts		ntent. Co	obbles	are sub	angular to)	•	÷	
00 - 2.45	D7	_													•	I	
		-													•	+	
		-												· <u>·</u> ·	*	Ī	
	B10	- — 3.00	SPT(S)	N=32 (7,7/9,8,7,8)											*	+	
00 - 3.45	D9				*	ŧ											
		-													*	ļ	$\langle \rangle$
		-												<u>بْبْ</u> مِنْ جُبْ	*	Ŧ	1
00 - 4.45	B12	4.00	SPT(S)	N=28 (3,6/3,11,7,7)										· · · · · ·	•	ļ	$\langle \rangle$
00 - 4.45	D11	-							Belo	w 4.00m	1 becom	nes sligi	ntly clayey.	, <u></u> ,	*	ŧ	1
		-												·	*	Ì	1
		-												• <u>•</u> ••••••••••••••••••••••••••••••••••	*	ļ	
00 - 5.45	B14	- - - 5.00		N=22 (4,7/5,2,3,12)										· <u>·</u> ···	•	İ	
	D13	- 5.00	5P1(5)	IN-22 (4,7/5,2,3,12)					Betweer	n 5.00 ai	nd 5.45	im medi	um dense.		*	Ŧ	1
		-												, <u></u>	* *	ŧ	
		-												·	*	Ī	
		-	0.000											·	<u>(8.43)</u>	ļ	
	B16 D15	— 6.00 -	SPT(S)	N=47 (7,7/11,11,10,15)										·	• • •	Ť	
		-												·	*	1	
		_												<u> </u>	*	Ť	
		-												<u> </u>	*	Į	
	B18 D17	— 7.00 -	SPT(S)	N=41 (4,9/9,11,10,11)										<u> </u>	*	ŧ	
		-													*	Į	
		-						Be	tween 7.45 an	id 8.95m	n mediu	ım cobb	le content.		•	ţ	Ŷ
		-												· <u>·</u> ··	•	Ì	
		-													*	+	
		-													*	ţ	
	B20 D19	- 8.50	SPT(S)	N=46 (9,9/14,12,8,12)										· · · · · · ·	*	ļ	
		-												· · · · · · ·	*	ł	
		-													*	ŧ	
		-													•	ŧ	
		_							Below 9.50)m beco	mes da	ark grey	and black.		*	ŧ	
		-													*	ļ	
		- 10.00	SPT(S)	N>50 (25 for 1mm/50 for 2mm)		11/01/2019								· · · · · · · · · · · · · · · · · · ·	* * 10.03	82.00	
DRI	LLING	[TECHNIQ	UE	CHISELLI	NG	10:00	V	VATER OBSERVATI	ONS		HOI	LE/CAS	ING DIAN		WATE	R ADD	ED.
	To .20		/pe tion Pit	Hard Strata From To	Duratio	10/01/2019	11:00	4.00 20	ise To Casing 3.20 4.00	Sealed	Hole Dia 200	. Depth 10.00	-	a. Depth 10.00	From 1.20 1	To 10.00	Volum
	0.03		ercussion			10/01/2019	15:00		3.70 7.00								
narks minated o	on engir	neers instr	uction.		1		[I	I							[
															Tern	nination [Depth:
									1							10.0	
Arcadis C St Mellon Park Cardiff	Cymru House Is Business		otherwise m). Diame	e stated: eter (mm), Time (hhı	mm),	Equipmer	nt Used 3000		Contrac Arcad						ogged By BR	Check CP	(ed B

ARCADIS Percussive Borehole Log

BH102

Abermule Business Park Client Powys County Council								Project No. 10026414 Easting (OS mE) 315704.47	Ground Le 92.00 Northing (29416	OS mN)		Start Date 08/01/201 End Date 09/01/201	9 1	^{:ale} :50 heet 1 c	of 1
SAMP	LES		TE	STS	er es	PROGR	ESS			STRATA			Depth		Insta
Depth	Type No.	/ Depth	Type/ No.	Results	Water Strikes	Date Time	Casing Water		Descr	iption		Legei	Depth (Thickness	s) Level I	Back
0.00 - 0.50		-				08/01/2019 10:00		Grass over dark gr Gravel is subangu				s16	(0.50)		1.9
0.50).50 - 1.20	B2 ES3	- - 0.50 -	PID	<1ppm				Dense grey and br to coarse GRAVEL	of mudstone a			ne	0.50	91.50	~
								content of subroun	ded siltstone.					÷,	
.20 - 1.65 .20 - 1.65		- 1.20 - 1.20 -	SPT(S) PID	N=33 (7,7/7,7,9,10) <1ppm											
2.00 - 2.45 2.00 - 2.45		- - - 2.00 - - -	SPT(S)	N=72 (7,12/14,17,18,23)											
3.00 - 3.45 3.00 - 3.45		- - - - 3.00 - -	SPT(S)	N>50 (14,11/36,21,0 for 0mm)					Dr <u>ī</u>	ler notes bould	ders below 2.7	<u>Dm.</u>	(4.60)		
4.00 - 4.45 4.00 - 4.45	B11 D10	- - - - - - - - -	SPT(S)	N≻50 (14,19/25,21,0 for 0mm)											
5.00 - 5.03	D12	- - - - - 5.00 -	SPT(S)	N>50 (25 for 10mm/50 for 25mm))	09/01/2019 14:00							5.10	86.90	
		- - - - -													
		-													
		-													
		- - - - -													
		- - - - -													
				CHISELL				NATER OBSERVATI			_E/CASING D		10/07		
rom 0.00	To 1.20	T	ype ction Pit	Hard Strata From To 5.00 5.10	Duratic 00:45	Date/ II				Sealed Hole Dia 200	Depth Casing 5.00 20	g Dia. Depth	From 1.20		J lume
1.20 marks	5.10	Cable P	Percussion												
rehole c		ced in 150r ineers instr		g. Due to coarse frac	tions and	d dense gro	und con	ditions 200mm casin	g was used to	drill borehole.					
													Ter	mination Dep	
														5.10r	11

BR

BH103

lient		siness P y Counc						Project No. 10026414 Easting (OS mE) 315731.18	Ground Leve 91.99 Northing (OS 294219.	mN)		End Da	1/2019		50 1eet 1	of 1
SAMPI		,		ESTS	Γú	PROGR	ESS			RATA						1
Depth	Type No.	Depth	Type/ No.	Results	Water Strikes		Casing Water		Descript				Legend	Depth (Thickness)	Level	Inst Bac
0.00 - 0.50 0.00 - 0.50	B2	-	NO.			14/01/2019 09:00	water	Grass over soft gre many roots. Gravel mudstone, sandsto	is subangular to	subrounde	elly CLAY w d fine to coa	ith Irse of	112:016 016:016	(0.50)		4.0
0.50 - 1.20 0.50 - 1.20		- 0.50 -	PID	<1ppm				Soft orange beddeo subangular to subro	d grey sandy slig bunded fine to co	htly gravelly parse of mu	/ CLAY. Grav dstone.	vel is		0.50	91.49	· · · · · · · · · · · · · · · · · · ·
		-							Below 1.00m la	minations o	f sand and o	ravel.		-	+	$\langle \rangle$
.20 - 1.65 .20 - 1.65		- 1.20 - 1.20 -	SPT(S) PID	N=11 (1,1/1,2,3,5) <1ppm							¥			(1.50)	-	
.00 - 2.45		- - - 2.00	SPT(S)	N=32 (4,5/7,7,9,9)				Firm grevish brown	slightly sandy s	ightly grave		avel		2.00	- 89.99	
2.00 - 2.45	D7	- - - -						is subangular to sul and sandstone.							- - -	
.00 - 3.45 .00 - 3.45		- 3.00	SPT(S)	N=37 (3,6/10,7,10,10)										(2.00)		
		-														°
.00 - 4.45 .00 - 4.45		4.00 - - - -	SPT(S)	N=30 (5,5/7,8,8,7)				Medium dense to d subrounded fine to siltstone, and quart subrounded of siltst	coarse GRAVEL zite with low cob	of mudstor	ne, sandston			4.00	87.99	
.00 - 5.45 .00 - 5.45		- - - 5.00 -	SPT(S)	N=30 (6,6/7,6,8,9)										- - - - -		
		- - - -												r 	+	
50 0.05	540	-	0.077(0)											- - - - -	+	
.50 - 6.95 .50 - 6.95		- 6.50 - - - -	5P1(5)	N=27 (4,4/6,8,5,8)										(6.00)		
		- - - -												9 7 9 9	+ + + + +	
.00 - 8.45 .00 - 8.45		- - - 8.00 -	SPT(S)	N=23 (2,3/5,6,6,6)										- - - -		
		- - - -												• • •	+	
		- - -												- - - -		
.50 - 9.95 .50 - 9.95		- - 9.50 - - -	SPT(S)	N=33 (8,11/12,7,7,7)					Below 9	50m becom	nes slightly cl	ayey.				
DF				CHISELLIN	NG	14/01/2019 16:00	10.00 V	VATER OBSERVATIO	DNS	<u></u> HOI	_E/CASING	DIAME	TER	10.00 WATE	+ 81.99	
	To 1.20 10.00	Inspec	ype ction Pit ercussion	Hard Strata From To	Duratio	n Date/Tir 14/01/2019	ne S 12:00		se To Casing Sea 1.80 5.00	aled Hole Dia.		ing Dia. 200	Depth 10.00	From 1.20 1	To \ 0.00	Volume
marks rminated	l on eng	ineers instr	uction.		1	1				I	<u> </u>	1	I			
														Term	nination D	
Arcad St Mel Park Cardif	dis Cymru Hou:	• Unless	otherwise	e stated:		Equipmer	it Used		Contractor				Lo	gged By	nination 10.(Cheo)(

AGS St Mellon Park Cardiff CF3 0EY

Arcadis Consulting (UK) Ltd

ogged By KA

СР

BH104

	iness P						10026414 Easting (OS mE)	92.38 Northing (OS mi	N)	End Da	te			
	Counc						315793.61					Sh	eet 1	of 1
ES Turo/			ESTS	ater ikes				STRA	ATA		1	Depth	Level	Inst
No.	Depth	No.	Results	St X		Water					-	(Thickness)		Bac
ES1 B4	- - - 0.50	PID	<1ppm		15/01/2019 08:00		many roots. Sand i subrounded fine to Firm orangish brow	s fine to coarse. Gra coarse of mudstone n slightly sandy slig	avel is subangular e, sandstone and s ghtly gravelly CLAY	to siltstone. 7. Sand	alizeria aliz	(0.40) 0.40	91.98	
E83	-									: 10		(1.20) -		
B6 D5	- 1.20 - 1.20 -	SPT(S) PID	N=24 (4,4/5,6,6,7) <1ppm				Medium dense to d	ense brownish grav	y sandy clavey sub	angular		1.60	90.78	
B8 D7	- - - - - -	SPT(S)	N=30 (5,7/7,8,7,8)				to subrounded fine siltstone and quartz	to coarse GRAVEL zite with medium co	of mudstone, lime	stone,		-		
B10 D9	- - - - - - - - - - - - - - - - - -	SPT(S)	N=54 (5,11/16,10,14,14)									-		
B12 D11	- - - - - -	SPT(S)	N=26 (6,6/5,6,7,8)									-	+ + + + + + + + + + + + + + +	
B14 D13	- - - - - - - - - - - - - - - - - - -	SPT(S)	N=17 (4,4/3,4,5,5)									(6.40)		
B16 D15	- 6.50 - 6.50 	SPT(S)	N=21 (3,4/4,6,5,6)									-		
B18 D17	- - - - - - - - - - - - - - -	SPT(S)	N=50 (9,11/16,16,10,8)									8.00 -	84.38	
B20 D19	- - - - - - - -			\bigtriangledown								(2.00) -		
	-				15/01/2019 16:00									
LLING To .20).00	Ty	ype ction Pit	CHISELLIN Hard Strata From To		15/01/2019	ime S 9 11:30	5.00 20 R	ise To Casing Sealed 3.00 5.00 6.00	1 1 1		Depth 10.00	From	To	ED Volume
	neers instr	ruction		1									[
n engir		uolion.											ination D	
	Battering Battering B2 Type/ No. B2 B4 B3 B6 D5 B8 B7 B10 D9 B12 D11 B14 D13 B16 D15 B18 D17 B10 D18 D17	BURLY Counce Image: Sign of the second secon	Punty Council IS Type/ Depth Type/ No. B2 Depth Type/ No. B4 0.50 PID B4 1.20 SPT(S) B6 1.20 SPT(S) B7 2.00 SPT(S) B10 - 3.00 SPT(S) B10 - 3.00 SPT(S) B11 - 5.00 SPT(S) B14 - 5.00 SPT(S) B14 - 5.00 SPT(S) B14 - 6.50 SPT(S) B16 - 6.50 SPT(S) B18 - 8.00 SPT(S) B19 - - - B107 - 8.00 SPT(S) B18 - - - D17 -	TUPDY COUNCI TESTS Type/ No. Depth Type/ No. Results B2 0.50 PID <1pm	Duruty Council TESTS Bay of the suits Type/ Results Bay of the suits B4 0.50 PID <1ppm	Purper Principal PrincePrincipal Principal Principal Principal Princip	Purpey Council Type/ No. Depth Type/ No. Results B 9 PRORES Date Time (Casing 08.00 B4 0.50 PID <1ppm	Bailing (205 mE) 1 Stating (205 mE) 1 Type/ b Depth No. Results PROCRESS bailing (205 mE) 100 (70019) Casing (205 mE) 100 (70019) Casing (205 mE) 100 (70019) B2 ES1 ES1 ES1 ES1 ES3 ES1 ES3 ES1 ES3 ES1 ES3 ES1 ES3 ES1 ES3 ES1 ES3 ES1 ES3 ES1 ES3 ES1 ES3 ES1 ES3 ES1 ES3 ES1 ES3 ES1 ES3 ES1 ES3 ES1 ES1 ES1 ES3 ES1 ES1 ES1 ES3 ES1 ES1 ES3 ES1 ES1 ES1 ES1 ES1 ES1 ES1 ES1 ES1 ES1	Batter (3.6.9) 242420.23 242420.23 Simulation of the second of th	Batting (03 Fig) Weight (03 Fig) <	During Council Description Pathog (56 mb) Pathog (56	Number Council Test Ts Automagnetic field with an end of the with an end of the with a submached field	Base of the control (CB mt) Exciting (CB mt) <thexciting (cb="" mt)<="" th=""> <thexciting< td=""><td>Bit Diam Batty Count Batty Solution Batty Solution<!--</td--></td></thexciting<></thexciting>	Bit Diam Batty Count Batty Solution Batty Solution </td

Contractor Arcadis Consulting (UK) Ltd Logged By Checked By

KA

СР

BH105

bermul								10026414 Easting (OS mE) 315820.62	92.00 Northing (OS mi 294284.79	N)		End Da	1/2019 ate 1/2019	1: Sł	50 neet 1	of 1
SAMPL				STS	- s	PROGR			STR/							1
Depth	Type/ No.	Depth	Type/ No.	Results	Water Strikes	Date Time	Casing Water		Description	I			Legend	Depth (Thickness)	Level	Insta Back
0.00 - 0.30 0.00 - 0.30 0.50 - 1.20 0.50 - 1.20	B2 ES1 B4 ES3	- - - 0.30 -	PID	<1ppm		16/01/2019 08:00		Grass over soft grey many roots. Sand is subrounded fine to Soft to firm orangish Gravel is subangula	s fine to coarse. Gra coarse of mudstone n brown slightly sar	avel is sub e, sandsto ndy slightly	angular to ne and sil gravelly	tstone. CLAY.	aliz	(0.30) 0.30	91.70	4.8
		- - - -												(1.10)	+	
.20 - 1.65 .20 - 1.65	B6 D5	- 1.20 - 1.20 - -	SPT(S) PID	N=25 (3,3/4,7,6,8) <1ppm				Medium dense to de subangular to subro siltstone and quartz	ounded fine to coars ite with low cobble	se GRAVE content. C	L of mude		· · · · · · · ·	1.40	90.60	
2.00 - 2.45 2.00 - 2.45	B8 D7	- - 2.00 - - -	SPT(S)	N=47 (10,9/10,14,11,12)				subrounded of siltst	one and mudstone						* * * * * * * * * * *	
3.00 - 3.45 3.00 - 3.45	B10 D9	- - - - - -	SPT(S)	N=39 (8,12/8,7,12,12)										(4.10)	+ + + + + + + + + + + + +	
1.00 - 4.45 1.00 - 4.45	B12 D11	- - - - - - -	SPT(S)	N=36 (8,6/6,11,10,9)											* * * * * * * * * * * * *	
5.00 - 5.45 5.00 - 5.45	B14 D13	- - - - - - - - -	SPT(S)	N=30 (14,14/9,9,5,7)	\sim									5.50	- - - - - - - - - - - - - - - - - - -	
5.00 - 6.15	D15	- - - - 6.00	SPT(S)	N>50 (25 for 70mm/44,6 for 5mm)		16/01/2019 14:00	6.00	Weak dark grey MU slightly sandy angul mudstone.						(0.65) 6.15	85.85	
		-														
		-													+ + + + + +	
		- - - - -														
		- - - - -														
		- - - - -														
DR		TECHNIQ		CHISELLIN	NG		V	VATER OBSERVATIO	NS	HOLE	/CASING	DIAME	TER	WATE	RADD	ED
0.00	To 1.20 6.15	Inspec	/pe ction Pit ercussion	Hard Strata From To	Duratio	¹ Date/Tii 16/01/2019	lie		See To Casing Sealed	Hole Dia.	Depth Ca 6.10	sing Dia. 200	Depth 6.00		To '	/olume
emarks erminated	on engi	neers instr	uction.				I				-	1		I	I	
														Term	nination E	

BH106

ent			ness P Counc						Project No. 10026414 Easting (OS mE) 315879.34	Ground Level (m 92.09 Northing (OS mh 294283.66	۷)	End D	1/2019 ^{ate} 1/2019	1:t Sh	ie 50 ieet 1	of 1
SAM	PLES				STS	ter (es	PROGF	RESS		STRA	TA			Depth		Insta
Depth	1	/pe/ No.	Depth	Type/ No.	Results	Wat Strik	PROGF Date Time	Casing Water		Description			Legend	(Thickness)	Level	Back
).00 - 1.2).10 - 0.2	20 B3 20 E\$	51 _ -	0.20	PID	<1ppm		07/01/2019 10:00		Grass over soft dark SILT. Gravel is subr	ounded fine to coar	se of siltstone.		12. 12. 12. 12. 16.	(0.40)	91.69	\$. P.
).60 - 0.8	30 ES	32 - -	0.80	PID	<1ppm				Dense becoming ve subangular to subro mudstone and quar	unded fine to coars	rown very silty sa se GRAVEL of sil	andy tstone,			+	
1.20 - 1.6 1.20 - 1.6	85 B5 85 D4		1.20	SPT(S)	N=37 (4,7/7,10,10,10)									(2.60)		
2.00 - 2.4 2.00 - 2.4	15 B7 15 D6		- 2.00	SPT(S)	N=60 (6,14/14,14,14,18)	-								-	+ + + + + + + + + + + + +	
3.00 - 3.1	10 D8	-	- 3.00	SPT(S)	N>50 (25 for 25mm/50 for 50mm)	\sim			Weak dark grey MU slightly silty very sar mudstone.					3.00 - (0.50)	89.09	
		-					07/01/2019 15:00							3.50	88.59	
		-	-											-		
		-													+ + + +	
		-	-											-	+	
		-	-												+	
		-													+	
		-	_											-	- - -	
		-													+	
		-	-											-	-	
															+	
		-	-											-	+ + + +	
		-	-											-	-	
From	DRILL To	ING T	ECHNIQ Ty	UE pe	CHISELLIN Hard Strata	IG Duratio	n~		VATER OBSERVATIO	NS e To Casing Sealed	HOLE/CASI Hole Dia. Depth	NG DIAME Casing Dia.			R ADDI ™ \	ED Volume (
0.00 1.20	1.20 3.10		Inspec	tion Pit ercussion	From To	Jarado	07/01/2019	ime 9 14:00		20 3.00	150 3.50	150	3.00		.50	
marks rminate	ed on (engine	ers instr	uction.		1		I		I	1	1 1	I	I	I	
														Term	ination D 3.50	
							Equipme			Contractor						ed By

ject Dermule ant Dwys Col			k			Project No. Ground Level (mAOD) 10026414 92.12 Easting (OS mE) Northing (OS mN) 315624.75 294149.13	Start Date 11/01/2019 End Date 11/01/2019) 1:	^{ale} 25 heet 1	of '
SAMPLE	s		TEST	S		STRATA				
Depth	Type/	Depth	Type/	Results	Water Strikes	Description	Legend	Depth (Thickness)	Level	Inst Bac
0.00 - 0.10 0.00 - 0.10	No. D2 ES1	- 0.10	No. PID	<1ppm		Grass over soft greyish brown slightly sandy slightly gravelly SILT with many roots. Gravel is subangular to subrounded fine to coarse of siltstone and mudstone.	NIZ	(0.10) 0.10	92.02	
0.30 - 0.50 0.30 - 0.50 0.30 - 0.50	B5 D4 ES3	- - - -				Firm orangish brown sandy slightly gravelly CLAY. Gravel is subangular to subrounded of siltstone and mudstone.		(0.50)		
0.60 - 0.90	B6	- 0.50 - - -	PID	<1ppm		Brown gravelly fine to coarse SAND. Gravel is subangular to subrounded fine to coarse of mudstone, siltstone and quartzite.		0.60	91.52	
	-	- - -				Firm brown sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is		(0.30) 0.90	91.22	
		- 				subangular to subrounded fine to coarse of mudstone and siltstone.		(0.10) 1.00 -	- 91.12	
	-									
	- - - - - - - - - - - 	- - - - - -						-		
	- - - - - -	- - - - -								
	-	- - - - -						-		
		-								
	-	-								
	-	- - - - -						-		
	-	- - - -								
		- - - -								
	-	- - - -						-		
	s	-				Remarks	1			
		1.8			s Orientati		on engineers in	struction.		
				Shoring / Stability:		None				
				Groundw		sription):			nination 1.00r	

Contractor

ermule ^t wys Co						Easting (OS mE) Northing (OS mN) E 315637.41 294133.42	End Date) SI	neet 1	of
SAMPLE			TEST	S	ـ ۵	STRATA				
Depth	Type/	Depth	Type/	Results	Water Strikes	Description	Legend	Depth (Thickness)	Level	In: Ba
00 - 0.20 00 - 0.20	No. D2 ES1		No.			Grass over soft greyish brown slightly sandy slightly gravelly SILT with many roots. Gravel is subangular to subrounded fine to coarse of siltstone and mudstone.	aliz:aliz aliz:aliz	(0.20)		
30 - 0.50 30 - 0.50	B5 D4	0.20	PID	<1ppm		Soft to firm grey bedded orange sandy slightly gravelly CLAY. Gravel is subangular to subrounded of siltstone and mudstone.		0.20	91.89	
30 - 0.50	ES3	- - - 0.50	PID	<1ppm				(0.40)	91.49	
70 - 0.90 70 - 0.90 70 - 0.90	B6 D8 ES7	•				Brown very gravelly fine to coarse SAND. Gravel is subangular to subrounded fine to coarse of mudstone, siltstone, limestone, quartzite.		0.60	91.49	Ì
10-0.30	207	0.90	PID	<1ppm		Firm brown sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine to coarse of mudstone, and siltstone.	•	0.95 1.00 -	91.14 91.09	
		· · · ·							• • • • • • •	
		-							- - - - - - - -	
									* - - - - - -	
		-							- - - - - - -	
		-						_	-	
N DETAIL	S	1.7			s Orientati	Remarks on: Soakway infiltration test undertaken. Pit terminated on	engineers in	struction.		
					0					
				Shoring / Stability: Groundw	Stable			Term	ination	De
					10030				1.00r	

Equipment Used Tracked 8T Excavator

Arcadis Consulting (UK) Ltd

oject bermule ient owys Co		ness Par Council	k			Project N 10026 Easting (31564	6414	Ground Level (mAOD) 92.08 Northing (OS mN) 294148.25	1 1 En	art Date 1/01/2019 Id Date 1/01/2019) 1:	25 heet 1	of 1
SAMPL	.ES		TEST	s	es es			STRATA					Insta
Depth	Type/ No.	Depth	Type/ No.	Results	Water Strikes		Des	cription		Legend	Depth (Thickness)	Level	Insta Back
0.00 - 0.20 0.00 - 0.20	D2 ES1	-	110.			Grass over soft greyish br	own slightly s	andy slightly gravelly SILT with	many	<u>alz.</u>	(0.00)	91.88	<u>.</u>
0.00 - 0.20		- 0.20	PID	<1ppm		mudstone.		led fine to coarse of siltstone an		sile sile	(0.20) 0.20	91.88	
0.30 - 0.50	B5	-		- 19911		Brown very clayey sandy s mudstone, siltstone and sa	subangular to andstone.	subrounded fine to coarse GRA	AVEL of			01.00	
0.30 - 0.50 0.30 - 0.50	D4 ES3	-									(0.30)	t	IIII =
		0.50	PID	<1ppm		Brown gravelly fine to coa	rse SAND. G	ravel is subangular to subround	ed fine to		0.50	91.58	
0.60 - 0.80	B6	-				coarse of mudstone, sand	stone and silt	stone.			(0.30)	+	
		-									0.80	91.28	
		-				Firm brown sandy slightly subangular to subrounded	gravelly CLA fine to coars	Y. Sand is fine to coarse. Gravel e of mudstone, and siltstone.	is		(0.10) 0.90	91.18	≡ī
		-									-	-	
		-										Į	
		-										-	
		-										Ì	
		-										-	
		-										+	
		-										Ì	
		-										-	
		-											
		-									-	Ē.	
		-										-	
		-											
		-										Į	
		-									-	-	
		-											
		-										I	
		-											
		-									-	F	
		-											
		-										ł	
		-										İ	
		-										-	
		-											
		-										Į	
		-										-	
		-											
		-										ľ	
		-										+	
		-										İ	
		-											
		-									-	+	
		E										Į	
		-										ł	
		-											
		<u> </u>									-	<u> </u>	
AN DETAI	LS						Remarks						
		1.7		Long Axi	s Orientat	ion:	Soakway infi	iltration test undertaken. Pit term	ninated on e	engineers in	struction.		
T													
				Shoring	Support:	None							
5				Stability:									
					ater (deso	cription):					Term	ination I	Deptł
												0.90n	n

Contractor

Project No. Start Date Scale 1:25 Project Ground Level (mAOD) 92.02 Northing (OS mN) 294152.51 **Abermule Business Park** 10026414 10/01/2019 End Date 10/01/2019 na (OS mE) Powys County Council 315662.68 Sheet 1 of 1 TESTS SAMPLES STRATA Water Strikes Depth (Thickness Install/ Level Type/ No. Type/ No. Backfill Depth Depth Results Description Legend 91.82 91.22 0.00 - 0.20 Grass over soft greyish brown slightly sandy slightly gravelly SILT with many roots. Gravel is subangular to subrounded fine to coarse of siltstone and D2 ۱*L*, ____ SIL. 0.00 - 0.20 ES1 (0.20)mudstone 0.20 PID <1ppm 0.20 Soft to firm grey bedded orange sandy slightly gravelly CLAY. Gravel is subangular to subrounded of siltstone and mudstone. ____ 0.40 - 0.60 0.40 - 0.60 0.40 - 0.60 B5 D4 ES3 (0.60) -0.60 PID <1ppm 0.80 PLAN DETAILS Remarks Soakway infiltration test undertaken. Pit terminated on engineers instruction. 1.8 Long Axis Orientation: Shoring / Support: None 0.5 Stability: Stable Termination Depth: Groundwater (description): 0.80m

Contractor

ermule			K			10026414 91.93 Easting (OS mE) Northing (OS mN) 315651.13 294168.98	10/01/2019 End Date 10/01/2019	, I.	25	_
wys Co	unty C	ouncil				315651.13 294168.98	10/01/2019) S	heet 1	of 1
SAMPLE			TEST	S	Water Strikes	STRATA		Depth	Level	Insta
Depth	Type/ No.	Depth	Type/ No.	Results	Stri	Description	Legend	(Thickness)	Level	Back
.00 - 0.30 .00 - 0.30 .00 - 0.30	B3 D2 ES1					Grass over soft greyish brown slightly sandy slightly gravelly CLAY with many roots. Gravel is subangular to subrounded fine to coarse of siltstone and mudstone.	NIZN	(0.30)		
		- 0.30 -	PID	<1ppm		Soft to firm orangish brown sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine to coarse of siltstone and mudstone.		0.30	91.63	
.50 - 0.70 .50 - 0.70 .50 - 0.70	B6 D5 ES4	- - - - 0.70	PID	<1ppm				0.45)	91.18	
		- - - - - - -							- - - - - - - -	
		-								
		- -						-	<u> </u>	
	S	1.7		Long Axis	Support:		n engineers in	struction.		
				Stability:		ription):			ination 0.75r	

bermule ent			k			Easting (OS mE) Northing (OS mN) En)/01/2019 d Date)/01/2019		25 heet 1	of 4
owys Co	1	ouncii			1		0/01/201			OT 1
SAMPLE	ES Type/		TEST Type/		Water Strikes	STRATA		Depth	Level	Inst
Depth	No.	Depth	No.	Results	Sti≤	Description	Legend	(Thickness)		Bac
0.00 - 0.20 0.00 - 0.20	D2 ES1	-				Grass over soft greyish brown slightly sandy slightly gravelly SILT with many roots. Gravel is subangular to subrounded fine to coarse of siltstone and	alizi - alio alizi - alio	(0.20)		
	-	- 0.20	PID	<1ppm		mudstone. Firm orangish brown and yellowish brown sandy slightly gravelly CLAY. Gravel is		0.20	91.61	
		-				subangular to subrounded fine to coarse of siltstone and mudstone.				
0.40 - 0.60 0.40 - 0.60	B5 D4	-						(0.50)		
0.40 - 0.60	ES3	- 0.60	PID	<1ppm					Ĩ	
	-	-						0.70	91.11	∭≡
		-							I	
	-	-							-	
	-							-	+	
	-	-							I	
	-	-							-	
	-	-							ł	
		-						-	ŀ	
		-							I	
		-							ł	
	-	-								
	-	-						_	Ĺ	
	-	-								
	-	-							ł	
	-	-								
		-							I	
	-	-						-	-	
	-	-							+	
									İ	
	-	-							I	
	-							-	-	
	-	-							-	
		-							Ì	
	-	-							I	
	-	-								
	-	-						-	-	
	-	-							ţ	
	-	-							I	
	-	-								
	-							-	-	
	-	-							İ	
	-	-							ļ	
	-	-								
		-								
	-	-						-	Ī	
		-							l l	
		-							ł	
	-	-							ł	
	-	-						-	F	
AN DETAIL	.S		1	1	1	Remarks		1	1	1
		1.6		Long Axis	Orientati	ion: Soakway infiltration test undertaken. Pit terminated on e	ngineers ir	struction.		
5				Shoring /		None				
				Stability:				Torre	ination	Dont
				Groundwa	ater (desc	snption):				
									0.70r	n

bject bermule ent owys Co			N			Easting (OS mE) Northing (OS mN)	09/01/2019 End Date 09/01/2019		:25 heet 1	of 1
SAMPLI	-		TEST	S		STRATA		_		
Depth	Type/	Depth	Type/	Results	Water Strikes	Description	Legend	Depth (Thickness)	Level	Inst Bac
0.00 - 0.20	No. D2	- Deptil	No.	results	- 00	Grass over soft greyish brown slightly sandy gravelly CLAY with many roots.	-			
0.00 - 0.20	ES1	-					112	(0.20)	ļ	
		- 0.20	PID	<1ppm		Firm orangish brown sandy slightly gravelly CLAY with low cobble content. Grave	el 🗍 🗍	0.20	91.95	Ë
0.30 - 0.50 0.30 - 0.50	B5 D4	-				is subangular to subrounded of siltstone and mudstone. Cobbles are subangular of siltstone.			ŧ	
0.30 - 0.50	ES3	- - - 0.50	PID	<1ppm				(0.50)	ļ	
		-							ł	
0.70 - 0.90	B6	-				Brown sandy slightly silty subangular to subrounded fine to coarse GRAVEL of		0.70	91.45	; <u> =</u> =
		-				siltstone, mudstone, sandstone, limestone and quartzite with medium cobble content. Cobbles are subangular to subrounded of siltstone and mudstone.		(0.25)	Į	
		-						0.95	91.20	, m =
		-						-	ŧ	
		-							I	
		-							ł	
		-							ţ	
		-							Ŧ	
		-							ţ	
		-							ł	
		-							ŧ	
		-						-	ļ	
		-							ļ	
		-							ŧ	
		-							ŧ	
		-							Ī	
		-							ļ	
		-							ŧ	
		-							ţ	
		-							Ī	
								-	+	
		-							ł	
		-							ŧ	
		-							I	
		-							ļ	
		-							ţ	
		-							ţ	
		-							ł	
		-							ļ	
								-	+	
		-							ŧ	
		-							I	
		-							ļ	
		-							ł	
		-							†	
		-							ł	
		-							ţ	
		-							ļ	
		-						-	+ +	
AN DETAII	_S	_	1	1	1	Remarks	I	l	1	1
		1.6		Long Axi	s Orientat		n engineers in	struction.		
5				Shoring /		None				
Ĩ				Stability:				· -	in c ⁴¹	D- ·
				Groundw	ater (deso	ription):			nination	
				1				1	0.95r	n

bermule owys Co			к			10026414 92.18 Easting (OS mE) Northing (OS mN) 315738.76 294235.63	10/01/2019 End Date 10/01/2019		:25 heet 1	of 1
SAMPLI	ES		TEST	S	r ss	STRATA				
Depth	Type/ No.	Depth	Type/ No.	Results	Water Strikes	Description	Legend	Depth (Thickness)	Level	Inst Bac
0.00 - 0.20 0.00 - 0.20 0.00 - 0.20	B3 D2 ES1	-	INO.			Grass over soft greyish brown slightly sandy slightly gravelly SILT with many roots.Gravel is subangular to subrounded fine to coarse of mudstone and siltstone.	NIZ	(0.30)		
		- 0.20 -	PID	<1ppm		Firm brown slightly sandy slightly gravelly CLAY. Gravel is subangular to	silizio	0.30	91.88	
).50 - 0.70).50 - 0.70	B6 D5	-				subrounded fine to coarse of siltstone and mudstone.			ł	
0.50 - 0.70	ES4	- 0.70	PID	<1ppm				(0.70)	ł	
		- - -						1.00 -	t	
		-						1.00 -	91.10	
		-								
		-								
		-								
		-						-		
		-							-	
		-								
		-							+ + +	
		-								
		-						-		
		-							ļ	
		-								
		-								
		-							ļ	
		-								
		-							-	
		-								
		-							+	
		-							Į	
		-							Į	
AN DETAIL	.S	-				Remarks			Γ	
⊤ ⊢		1.6		Long Axis	orientati	on: Soakway infiltration test undertaken. Pit terminated	l on engineers in	struction.		
				Shoring /	Support:	None				
				Stability: Groundw		ription):		Term	nination	Dept
					-				1.00n	n

bermule ent owys Co			K			Easting (OS mE) Northing (OS mN) En	D9/01/2019 End Date D9/01/2019		1:25 Sheet 1 c	
SAMPLI		Jourion	TEST	e		STRATA				
Depth	Type/	Depth	Type/	Results	Water Strikes	Description	Legend	Depth (Thickness)	Level	Insta Bacl
0.00 - 0.20	No. B3	-	No.	riodulo	- 05	Grass over soft greyish brown slightly sandy gravelly CLAY with many roots.	NK			
0.00 - 0.20 0.00 - 0.20	D2 ES1	-	DID				sile sile	(0.30)	ł	Ⅲ≡
0.30 - 0.50	D5	- 0.20	PID	<1ppm			sile	0.30	92.04	
0.30 - 0.50 0.30 - 0.60	ES4 B6	-				Firm orangish brown slightly sandy slightly gravelly CLAY with low cobble content. Gravel is subangular to subrounded fine to coarse of siltstone and mudstone.			t	Ⅲ≡
		- 0.50 -	PID	<1ppm		Cobbles are subangular of siltstone.		-	ł	
		-						(0.60)	Į	
		-							ł	
).90 - 1.10	B7	-				Brown very sandy subangular to subrounded fine to coarse GRAVEL of siltstone,		0.90	91.44	
		-				mudstone, sandstone, limestone, quartzite with medium cobble content. Cobbles are subangular to subrounded of siltstone, limestone and mudstone.		(0.20) - 1.10	91.24	
		-						1.10	51.24	
		_							ţ	
		-							ł	
		-						-	ţ	
		-							ł	
		-							Į	
		-							İ.	
		-							ł	
		-							ţ	
		-							ł	
		-						-	ļ	
		-							ł	
		-							Į	
		-							ł	
		-						-	Ļ	
		-							ŧ	
		-							ļ	
		_							ţ	
		-						-	ļ	
		-							ţ	
		-							ł	
		-							Į	
		-						-	+	
		-							Ì	
		-							ł	
		-							Į	
		-						-	ł	
		-							Į	
		-							ŧ	
		-							Į	
		-						-	ł	
AN DETAII	S	F	I	I	l	Remarks		I	I	1
		1.8		Long Axis	Orientati	ion: Soakway infiltration test undertaken. Pit terminated on e	ngineers ir	struction.		
T										
				Shoring /	Support:	None				
5				Stability:						
				Groundw	ater (desc	sription):			nination I	
11									1.10n	n

SA10

ent		ess Par	k			10026414 92.41 Easting (QS mE) Northing (QS mN)	Start Date Scale 09/01/2019 1:25 End Date 00/04/0000			~£ 4
owys Co	-	ouncil			1		09/01/2019	9 5	heet 1	of 1
SAMPL			TEST		Water Strikes	STRATA		Depth	Level	Inst
Depth	Type/ No.	Depth	Type/ No.	Results	St 😤	Description	Legend	(Thickness)		Bacl
.00 - 0.20 .00 - 0.20	B3 D2	-				MADE GROUND: Grass over firm greyish brown slightly sandy gravelly CLAY with few pieces of plastic and glass bottles. Gravel is subangular fine to coarse of	of XXX	(0.20)	-	
.00 - 0.20	ES1	- 0.20	PID	<1ppm		siltstone and mudstone, Firm orangish brown sandy slightly gravelly CLAY. Gravel is subangular to		0.20	92.21	
		-				subrounded fine to coarse of mudstone, siltstone, sandstone and quartzite.			ŧ	
.40 - 0.60 .40 - 0.60	B6 D5	-							I	
.40 - 0.60	ES4	-						-	ł	∷ ≡≡≡
		- 0.60	PID	<1ppm				(0.90)	ł	
		-							ł	
		-							ŧ	
		-							Ĺ	
.10 - 1.20	B7	-						1.10	91.31	
		-				Brown very sandy silty subangular to subrounded fine to coarse GRAVEL of siltstone, mudstone, sandstone, limestone, quartzite with low cobble content.		1.10 (0.10) 1.20	91.21	
		-				Cobbles are subangular to subrounded of siltstone and mudstone.	_/		+	
		-							ŧ	
		-						-	ŧ	
		-							I	
		-							ł	
		-							ļ	
		-							ł	
		-						-	÷	
		-							ŧ	
		-							ŧ	
		-							Ī	
		-							I	
		-							ł	
		-							ļ	
		-							ţ	
		-							ł	
		-						-	ŧ	
		-							ŧ	
		-							Ŧ	
		_							I	
		-							ł	
		-						-	ţ	
		-							ł	
		-							ł	
		-							ŧ	
		-							ŧ	
		-						-	Ŧ	
		_							I	
		-							ļ	
		-							ļ	
		-						-	ł	
		-							ŧ	
		-							Ŧ	
		_							Į	
		-							Ŧ	
								-	ł	
AN DETAII	LS			1	1	Remarks		1		
		1.5		Long Axis	s Orientat	ion: Soakway infiltration test undertaken. Pit terminated or	n engineers in	struction.		
T										
				Shoring /	Support:	None				
5				Stability:	Stable					
				Groundw	ater (deso	sription):			nination	
									1.20r	n
						l				

Project Abermule Business Park Client Powys County Council

		S	411	
92.18 0 Northing (OS mN) E	tart Date 9/01/2019 nd Date 9/01/2019		ale 25 heet 1	of 1
STRATA		Depth		Install/
Description	Legend	(Thickness)	Level	Backfill
ly sandy gravelly CLAY with many roots and	alkalo			

SAMPLE			TEST:		ike	STRATA		Depth	Level	Ins
Depth	Type/ No.	Depth	Type/ No.	Results	Water Strikes	Description	Legend	(Thickness)		Bac
00 - 0.30 00 - 0.30 00 - 0.30	B3 D2 ES1	-				Grass over soft greyish brown slightly sandy gravelly CLAY with many roots and rootlets. Gravel is subangular fine to coarse of siltstone and mudstone.	312		ļ	
JU - U.SU	201	-					SUL	(0.30)	ŧ	
		0.30	PID	<1ppm		Firm orangish brown slightly sandy slightly gravelly CLAY with low cobble content.	SULS	0.30	91.88	
		-				Gravel is subangular to subrounded fine to coarse of siltstone and mudstone.			I	
50 - 0.70 50 - 0.70	B6 D5	-				Cobbles are subangular of siltstone.		-	ł	
50 - 0.70	ES4	-						(0.70)	ł	Ē
		0.70	PID	<1ppm				(0.70)	ł	≝∎
		-						- - -	ł	
		-						- 	91.18	
		-						1.00 -	+ 91.18 1	
		-							ţ	
		-							Ŧ	
		-							I	
		-							ļ	
		-							ţ	
		-							ŧ	
		-							ł	
		-							ţ	
		-						-	ŧ	
									I	
		_							I	
		-							I	
		-							I	
		-							ł	
		-							ł	
		-							ļ	
		-							ļ	
		-							ł	
		-						-	÷	
		-							ŧ	
		-							Ŧ	
		-							I	
		-							ļ	
		-							ł	
		-							ļ	
		-							ŧ	
		-							ţ	
		-							+	
		-							ŧ	
		-							ŧ	
									I	
		-							ł	
		-						.	ŧ	
		-							ŧ	
		_							ţ	
		-							ţ	
		-							ţ	
		-						-	†	
N DETAIL	.S					Remarks				
L		1.6		Long Axis	Orientati	ion: Soakway infiltration test undertaken. Pit terminated on e	ngineers ir	struction.		
				0.5	Our	Nene				
				Shoring /		None				
				Stability:		stintion).		Term	nination	Den
				Groundwa	ater (desc	anpuonj.				
									1.00r	11
	^{Cymru} U						Lo		Checke	

Project No. **10026414** Easting (OS mE) **315763.84**

permule Business Park ^{int} wys County Council						10026414 92.06 07 Easting (OS mE) Northing (OS mN) En 315821.99 294270.88 07	7/01/2019 d Date 7/01/2019		^{Scale} 1:25 Sheet 1		
		Jouncii			1		/01/2019	• S	neet 1	OT 1	
SAMPL	_ES Type/		TEST Type/		Water Strikes	STRATA		Depth (Thickness)	Level	Inst Bac	
Depth 00 - 0.20	No. ES1	Depth	No.	Results	S₫	Description	Legend				
JU - 0.20	ESI	-				Grass over soft grey sandy slightly gravelly SILT with many roots.	alk	(0.00)	ŧ		
20 - 0.30	D2	0.20	PID	<1ppm			sile sile	(0.30)	ŧ		
		-				Firm orangish brown sandy slightly gravelly CLAY with low cobble content. Gravel	NIL:	0.30	91.76		
F0 0 70		-				is subangular to subrounded of siltstone and mudstone. Cobbles are subangular of mudstone.			ŧ		
50 - 0.70 50 - 0.70 50 - 0.70	B5 D4 ES3							(0.50)	Ī		
10 - 0.70		- 0.70	PID	<1ppm					ļ	E	
		-					در شد و تعد است (سبت ر	0.80	91.26		
									1		
		-						-	ŧ		
		-							ţ		
		-							ŧ		
]		
		-							ļ		
		-							ţ		
		-							ţ		
		E							ł		
		-							ļ		
		-						-	ţ		
		-							ļ		
		-							ŧ		
									ł		
		_							ļ		
		-							ţ		
		-							ŧ		
		-							ŧ		
		Ē							ł		
		_						-	Ŧ		
		-							ļ		
		-							ţ		
		-							ŧ		
		E							I		
		_							Ŧ		
		-							ļ		
		-							ł		
		-							ŧ		
								-	ł		
		_							ļ		
		-							ţ		
		-							ţ		
		-							ŧ		
									Ī		
		F							1		
		-							1		
		-							ţ		
		F							Ŧ		
N DETAI	ILS	1	1	1	1	Remarks		1	1	1	
		2.0		Long Axis	orientati	on: Soakway infiltration test undertaken. Pit terminated on e	ngineers ir	struction.			
Т											
				Shoring /		None					
				Stability:				□ -	ain c ti	<u></u>	
1.1				Groundw	ater (desc	cription):		lern	nination	⊔ер	

Contractor

Powys County Council					ind Date	3 3	Sheet 1			
SAMPL			TEST	S	ter	STRATA	1	Depth		Ins
Depth	Type/ No.	Depth	Type/ No.	Results	Water Strikes	Description	Legend	(Thickness)	Level	Bac
00 - 0.20 00 - 0.20	D2 ES1	-				Grass over soft greyish brown slightly sandy gravelly SILT with many roots.	312	(0.20)	-	
		- 0.20 - - -	PID	<1ppm		Firm brown sandy slightly gravelly SILT. Gravel is subangular to subrounded fine to coarse of siltstone.		0.20	91.81	
60 - 0.80 60 - 0.80 60 - 0.80	B4 D5 ES3	-						(0.60)	91.21	
		- 0.80 - - -	PID	<1ppm			<u> </u>	0.80	91.21	m=
		-								
		-								
		-								
		-						-		
		-								
		-							- - -	
		-							-	
		- - - -						-	*	
		-								
		-								
		-								
		-								
								-		
		-								
		-							+	
		-								
		- 						-	ŧ	
	S	3.7		Long Axis	s Orientat	Remarks ion: Soakway infiltration test undertaken. Pit terminated on	engineers ir	struction.		
T										
				Shoring / Stability:	Stable			Tar	nination	Der
				Groundw	ater (dese	cription):			0.80r	

t	Abermule Business Park ^{Client} Powys County Council			Easting (OS mE) Northing (OS mN) Er	8/01/2019			e f		
		ouncil			1	Γ	8/01/2019	9 5	neet 1	of
SAMPLE			TEST	S	Water Strikes	STRATA		Depth	Level	Ins
Depth	Type/ No.	Depth	Type/ No.	Results	Stri	Description	Legend	(Thickness)	Lever	Bad
10 - 0.30	D2	-				Grass over soft greyish brown slightly sandy gravelly SILT with many roots.	NE:NE NE:NE NE:NE NE:NE		1	
10 - 0.30 10 - 0.30	ES1	-					siz sic	(0.35)	ļ	
		- 0.30	PID	<1ppm			sile sile		ţ	III E
0 - 0.60	B5	-				Firm orangish brown sandy slightly gravelly CLAY with low cobble content. Gravel		0.35	91.95	1111 3
10 - 0.60 10 - 0.60	D4 ES3	-				is subangular to subrounded fine to coarse of siltstone and mudstone. Cobbles are subangular of mudstone.			ŧ	
		0.60	PID	<1ppm					ł	
		-						(0.65)	ţ	
		-							ţ	≝
		-				Medium cobble content below 0.95m.			- 91.30	
		-						1.00 -	+ 91.30 1	
		-							ŧ	
		-							I	
		-							ŧ	
		-							ļ	
		-							ţ	
		-							ŧ	
		-							ŧ	
		-							ŧ	
								-	ł	
		-							I	
		-							ł	
		-							Ŧ	
		-							ł	
		-							ł	
		-							ł	
		-							ţ	
		-							ţ	
		-							ļ	
		-						-	ŧ	
		-							ţ	
		-							ţ	
		-							ţ	
		-							ţ	
		-							ţ	
		-							ţ	
		-							ŧ	
		-							ŧ	
		-							ŧ	
		-						-	Ŧ	
		-							ł	
		_							ł	
		-							ł	
		-							ļ	
		-							ţ	
		-							1	
		-							‡	
		-							‡	
		-						.	‡	
N DETAIL	s.	-				Remarks				
		1.8		Long Axis	s Orientati		engineers in	struction		
		0.1			- Unontall					
				Shoring /	Support.	None				
				Stability:						
				Groundw		ription):		Term	nination	Dep
					,				1.00r	
			-					1	1.001	e 👘

0.00 - 0.20 B3 Grass over soft to firm greyish brown slightly sandy gravelly CLAY with few roots and rootlets. Gravel is subangular fine to coarse of siltstone. Mo. 0.00 - 0.20 D2 D2 Grass over soft to firm greyish brown slightly sandy gravelly CLAY with few roots and rootlets. Gravel is subangular fine to coarse of siltstone. Mo. 0.30 - 0.50 D5 B6 Firm brown sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine to coarse of siltstone. Mo. 0.30 - 0.50 D5 ES4 0.50 PID <1ppm 0.30 - 0.50 ES4 0.50 PID <1ppm 0.80 - 1.00 B7 B7 Brown sandy silty subangular to rounded fine to coarse GRAVEL of mudstone, siltstone, subrounded of mudstone, and siltstone. Mo.			91.67	Install/ Backfil
0.00 - 0.20 B3 0.00 - 0.20 D2 0.00 - 0.20 D2 0.00 - 0.20 D2 0.00 - 0.20 ES1 0.20 PID <1ppm and rootlets. Gravel is subangular fine to coarse of siltstone. No	(Thickness) (0.30) 0.30 (0.35) 0.65 (0.45)	92.02		
0.00 - 0.20 B3		0.30 (0.35) 0.65 (0.45)	91.67	
0.30 - 0.50 B6 - <t< td=""><td></td><td>(0.35) 0.65 (0.45)</td><td>91.67</td><td></td></t<>		(0.35) 0.65 (0.45)	91.67	
0.80 - 1.00 B7 B7 Brown sandy silty subangular to rounded fine to coarse GRAVEL of mudstone, siltstone, quartzite and sandstone, with medium cobble content. Cobbles are subrounded of mudstone, and siltstone.		(0.45)	91.67	<u> </u>
			ţ	
		1.10	91.22	
			-	
			- - - -	
			+ + + + +	
			+ + +	
			- - - -	
			-	
			+ + + +	
			+ + +	
PLAN DETAILS Remarks 2.0 Long Axis Orientation: Soakway infiltration test undertaken. Pit terminated on engin	ineers ins	struction.	†	
Shoring / Support: None				
0.5 Stability: Stable Groundwater (description):		Tern	nination 1.10r	

Contractor

iect Dermule nt			k			10026414 92.42 0	tart Date 8/01/2019 ind Date) 1:	^{ale} 25	
wys Co	unty C	Council				Easting (OS mE) Northing (OS mN) E 315835.34 294248.99 0	8/01/2019	S	heet 1	of
SAMPLE			TEST	S	Water Strikes	STRATA		Depth	Level	Ins
Depth	Type/ No.	Depth	Type/ No.	Results	Wa Stri	Description	Legend	(Thickness)		Ba
.00 - 0.20 .00 - 0.20 .00 - 0.20	B5 D2 ES1	- - - 0.20 -	PID	<1ppm		MADE GROUND: Grass over soft to firm greyish brown slightly sandy gravelly CLAY with few roots. Includes few metal cans, plastic bottles and plastic fragments. Gravel is subangular fine to coarse of siltstone.		(0.40)	92.02	
40 - 0.60 40 - 0.60 40 - 0.60	B6 D4 ES3	- - - - - 0.60	PID	<1ppm		Firm brown sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine to coarse of siltstone.		0.40 (0.30)	92.02	
70 - 0.90	Β7	- - - -				Brown very sandy subangular to rounded fine to coarse GRAVEL of mudstone, siltstone, quartzite and sandstone, with medium cobble content. Cobbles are subrounded of mudstone and siltstone.		0.70 (0.40)	92.02	
								1.10	91.32	
		-								
		- - -								
		- - - -						-		
		-								
		- - -								
		- - - -						-		
		-								
		- - - -								
		- - 						-		
		- - -								
		- - -								
		- - -								
		- - 						-	-	
	.s	1.9		Long Axis	s Orientati	Remarks on: Soakway infiltration test undertaken. Pit terminated on	engineers in	struction.		
				Shoring / Stability:		None				
				Groundw		ription):		Term	ination I 1.10n	

Contractor

TP101

0.00 - 0.20 0.00 - 0.20 10.20 - 0.40 0.20 - 0.40 0.20 - 0.40 0.20 - 0.40	nty Co		TEST: Type/ No. PID PID PID	S Results <1ppm <1ppm	Wrater Strikes	10026414 91.82 14 Easting (OS mE) Northing (OS mN) En	art Date 4/01/2019 d Date 4/01/2019	Depth (Thickness)	91.62 91.22	
Depth T 0.00 - 0.20 1 0.00 - 0.20 1 0.20 - 0.40 1 0.20 - 0.40 1 0.20 - 0.40 1 0.60 - 0.80 1	Type/ No. D2 ES1 B5 D4 ES3 -	0.20	Type/ No. PID PID	Results <1ppm <1ppm	Water Strikes	Description Grass over soft to firm grey sandy slightly gravelly CLAY with many roots and rootlets. Gravel is subangular fine to coarse of mudstone and sandstone. Firm orangish brown slightly sandy gravelly CLAY. Gravel is subangular to subrounded fine to coarse of mudstone, sandstone and siltstone. Grey and brown very sandy subangular to subrounded fine to coarse GRAVEL of mudstone and sandstone with low cobble content. Cobbles are subangular to		(Thickness) (0.20) 0.20 (0.40) 0.60 (0.40)	91.62	
0.00 - 0.20 0.00 - 0.20 10.20 - 0.40 0.20 - 0.40 0.20 - 0.40 0.20 - 0.40	No. D2 - ES1 - B5 - D4 - ES3 - - - - - - - - - - - - - -	0.20	No. PID PID	<1ppm <1ppm	Water Strike	Grass over soft to firm grey sandy slightly gravelly CLAY with many roots and rootlets. Gravel is subangular fine to coarse of mudstone and sandstone. Firm orangish brown slightly sandy gravelly CLAY. Gravel is subangular to subrounded fine to coarse of mudstone, sandstone and siltstone. Grey and brown very sandy subangular to subrounded fine to coarse GRAVEL of mudstone and sandstone with low cobble content. Cobbles are subangular to		(Thickness) (0.20) 0.20 (0.40) 0.60 (0.40)	91.62	Back = = = = = = =
0.00 - 0.20 0.00 - 0.20 0.20 - 0.40 0.20 - 0.40 0.20 - 0.40 0.20 - 0.40	D2 - ES1 - B5 - D4 - ES3 - - - - - - - - - - - - - - - - - - -	0.40	PID PID	<1ppm		Firm orangish brown slightly sandy gravelly CLAY. Gravel is subangular to subrounded fine to coarse of mudstone, sandstone and siltstone. Grey and brown very sandy subangular to subrounded fine to coarse GRAVEL of mudstone and sandstone with low cobble content. Cobbles are subangular to		0.20 (0.40) 0.60 (0.40)	91.62	= = = = = = =
0.20 - 0.40 0.20 - 0.40 0.20 - 0.40 0.20 - 0.40	B5 - D4 - ES3 - - - - - - - - - - - - - - - - - - -	0.40	PID	<1ppm		Firm orangish brown slightly sandy gravelly CLAY. Gravel is subangular to subrounded fine to coarse of mudstone, sandstone and siltstone. Grey and brown very sandy subangular to subrounded fine to coarse GRAVEL of mudstone and sandstone with low cobble content. Cobbles are subangular to		0.20 (0.40) 0.60 (0.40)	91.62	= = = = = = =
0.20 - 0.40 0.20 - 0.40	D4 ES3 - - - - -	0.40	PID	<1ppm		Subrounded fine to coarse of mudstone, sandstone and siltstone. Grey and brown very sandy subangular to subrounded fine to coarse GRAVEL of mudstone and sandstone with low cobble content. Cobbles are subangular to		(0.40) 0.60 (0.40)	91.22	= = = = = = = = = = = = =
0.60 - 0.80	D7					mudstone and sandstone with low cobble content. Cobbles are subangular to		0.60 (0.40)	91.22	= = = = = = = = = = = = =
0.60 - 0.80 0.60 - 0.80	D7 - ES6	0.80	PID	<1ppm		mudstone and sandstone with low cobble content. Cobbles are subangular to		(0.40)	91.22	= = = = = =
0.60 - 0.80 0.60 - 0.80		0.80	PID	<1ppm		mudstone and sandstone with low cobble content. Cobbles are subangular to		(0.40)		
		0.80	PID	<1ppm						
		-						1.00 -		
		-					**:*******	1.00 -	- 90.82	= "
		-								
		-								
		-								
		-						-	+	
		_			1			-	Ì	
		-								
	-	-								
	-	-							I	
	-							-	-	
									Í	
	Ę									
	-									
	-									
	-							-		
	-									
	-								I	
	-								+	
	-	-						-	-	
	Ē								I	
	-								-	
	-									
	-							-		
	-									
	-								İ	
	-									
	-	-						-	-	
	-								I	
	-								-	
	F									
	Ē							_	l	
	-									
	E								ŧ	
	Ē								ļ	
	-									
	-	-						-	Ē	
AN DETAILS		2.0		Long Axis	Orientati	Remarks on: Terminated on engineers instruction.				
_ 		2.0			, oneniali					
5				Shoring /		None				
.5				Stability:					·	
				Groundwa	ater (desc	ription):			ination [
									1.00n	۱

Contractor

TP102

oject Dermule ent Dwys Co			k			10026414 91.67 1 Easting (OS mE) Northing (OS mN) E	tart Date 4/01/2019 nd Date 4/01/2019) 1:	^{ale} 25 heet 1	of 1
SAMPLE	-		TEST	s	, ø	STRATA				
Depth	Type/	Depth	Type/	Results	Water Strikes	Description	Legend	Depth (Thickness)	Level	Insta Bacl
0.00 - 0.20	No. D2	Deptil	No.	results	- 00	Grass over soft to firm grey sandy slightly gravelly CLAY with many roots. Sand is	-			
0.00 - 0.20	ES1	-				fine to coarse. Gravel is subangular fine to coarse of mudstone and sandstone.	12	(0.20)	Į	
).20 - 0.60).20 - 0.60	B5 D4	- 0.20	PID	<1ppm		Firm orangish brown slightly sandy gravelly CLAY. Gravel is subangular to		0.20	91.47	ĭ <u>₩</u> Ш
0.20 - 0.60	ES3	-				subrounded fine to coarse of mudstone, sandstone and siltstone.				
		-					· · · · ·	(0.40)		
).60 - 0.80	B7	- 0.60	PID	<1ppm			· · · · · ·	0.60	91.07	쁘릚
0.60 - 0.80	ES6	-				Brown very sandy subangular to subrounded fine to coarse GRAVEL of mudstone and sandstone with low cobble content. Cobbles are subangular to subrounded o	F	0.00	0	
		- 0.80	PID	<1ppm		mudstone.		(0.40)		
		-								
		-						1.00 -	90.67	≡
		-								
		-								
		-							ł	
		-							t t	
		-						-	Ī	
		-							I	
		-							-	
		-								
								-	-	
		-							ł	
		-							I	
		-								
		-								
		-						-	-	
		-								
		-							Ī	
		-							ļ	
								-	-	
		-								
		-								
		-							Ì	
		-							I	
		-						-		
		-								
		-							ł	
		-							t t	
								_	L	
		-								
		-							-	
		-								
		-							Ì	
		-						-		
		-							-	
		-							ŧ	
		-								
		-							Ì	
		-								
AN DETAIL	5	1 9		Long Axis	Orientet	Remarks ion: Terminated on engineers instruction.				
_ 		1.8			Giendl					
				Shoring /	Support:	None				
5				Stability:						
				Groundwa		cription):		Term	ination	Depth
									1.00r	n

TP103

ect permule nt wys Co			k			Project No. Ground Level (mAOD) 10026414 91.58 Easting (OS mE) Northing (OS mN) 315574.59 294081.75	14/01/2019 End Date 14/01/2019) 1:	ale :25 boot 1	l of 4
-	-	ouncii			1		14/01/2019	5	heet 1	OT
SAMPLE			TEST		Water Strikes	STRATA		Depth	Level	Ins
Depth	Type/ No.	Depth	Type/ No.	Results	Str &	Description	Legend	(Thickness)		вас
.00 - 0.30 .00 - 0.30	D2 ES1	- - -				Grass over soft to firm greyish brown sandy slightly gravelly CLAY with many roots and rootlets. Gravel is subangular fine to coarse of mudstone and sandstone.	112:	(0.30)		
.40 - 0.60 .40 - 0.60 .40 - 0.60	B5 D4 ES3	- 0.30	PID	<1ppm		Firm orangish brown slightly sandy gravelly CLAY. Gravel is subangular to subrounded fine to coarse of mudstone, sandstone and siltstone.		0.30	91.28	
.40 - 0.00	233	0.60	PID	<1ppm				(0.70)		
		- - - -						1.00 -	- 90.58	
		- - - - - - - - - - - - - -						-		
		- - - - - - - - - -								
AN DETAIL	.S	-				Remarks				
	·	2.0		Long Axis Shoring / Stability: 3	Support: Stable	on: Terminated on engineers instruction.				
				Groundwa	ater (desc	ription):		Term	nination 1.00r	

Tracked 8T Excavator

Arcadis Consulting (UK) Ltd

TP104

				iai Fil	LUg					••	104	T
Project Abermule Client Powys Co			k			Project N 10026 Easting 31555	6414 (OS mE)	Ground Level (mAOD) 91.60 Northing (OS mN) 294078.23	Start Date 14/01/201 End Date 14/01/201	9 1	ale :25 heet 1	of 1
SAMPL			TEST	S	ر م			STRATA				
Depth	Type/	Depth	Type/	Results	Water Strikes		Descri		Legend	Depth (Thickness)	Level	Install/ Backfil
0.00 - 0.20	No. D2 ES1	-	No.			Grass over soft to firm gre roots. Gravel is subangula	eyish brown sand ar fine to coarse	dy slightly gravelly CLAY with m of mudstone and sandstone.		(0.20)		
- - - - - 0.40 - 0.60 - 0.40 - 0.60 - 0.40 - 0.60	B5 D4 ES3	- 0.20 - - -	PID	<1ppm		coarse GRAVEL of sands	tone, siltstone a	andy subangular to subroundeo nd mudstone with low cobble ar e subangular of mudstone.	I fine to	0.20	91.40	
		- 0.60	PID	<1ppm					م، من من من من من من من من من من من من من	* (0.80)	+ + + + + + + +	
- - - - - -		- - - - - -							• • • • • • • • • • • • • • • • • • •	* * 1.00	90.60	
		-									+	
		-									+ + + + + + + + + +	
		- - - - - - -									+ + + + + + + + + + +	
- - - -		- - - -									- - - - - -	
- - - -											-	
		- - - - -									- - - - -	
		-									- - - - -	
_		- - - - -										
											- - - - -	
		- - - -										
- - - -		- - - -										
PLAN DETAII	LS	F	1	1	1		Remarks			1		
_ ⊢		1.9		Long Axis	orientat	on:	Terminated on	engineers instruction.				
0.5				Shoring / Stability:		None						
				Groundw		ription):				Tern	nination 1.00r	
Arcadis	Cvmru	nlocc other				Fauipment Used	1	Contractor	1	oaaed Bv	Checke	

Contractor

ermule ^भ wys Co			κ.			10026414 93.75 Easting (OS mE) Northing (OS mN) 315660.28 294193.35	15/01/2019 End Date 15/01/2019	e s	:25 heet 1	of 1
SAMPLE			TESTS			STRATA				
Depth	Type/	Depth	Type/	Results	Water Strikes	Description	Legend	Depth (Thickness)	Level	Ins Bac
00 - 0.20	No. ES1		No.		- 05	MADE GROUND: Soft brown slightly sandy slightly gravelly CLAY. Gravel is subangular fine to coarse of sandstone and mudstone.				
		- - - -				subangular fine to coarse of sandstone and mudstone.		(0.20) 0.20	93.55	, -
	-	- - - -							 + 	
									-	
	-							-		
	-	- - - -								
	-	• • •								
	-	- - - -								
	-	- - -							+	
	-	• • • •								
		- - - -								
	-	- - - -							+	
	-									
	-	- - -								
	-	- - -								
	-	- 								
	-	- - - -								
	-	- - - -								
		-						-	†	
	S	0.2		Long Axis	orientat	Remarks				
				Shoring /		None				
				Stability: Groundw		ription):			nination 0.20r	

HTP02

ermule ^t wys Co			<			10026414 93.74 Easting (OS mE) Northing (OS mN) 315649.63 294183.41	15/01/2019 End Date 15/01/2019) S	^{ale} 25 heet 1	of '
SAMPLE			TESTS	3	۲ű	STRATA				
Depth	Type/ No.	Depth	Type/ No.	Results	Water Strikes	Description	Legend	Depth (Thickness)	Level	Ins Bao
00 - 0.20	ES1	-	110.			MADE GROUND: Soft brown slightly sandy slightly gravelly CLAY. Gravel i subangular fine to coarse of sandstone and mudstone.	s 📈	(0.20)		
		-						0.20	93.54	III≡
		-							ļ	
		-							ł	
		-							ļ	
		-							ł	
		-								
		-							ł	
		-							ł	
		-							Ī	
		-							Į	
		-							ļ	
		-							ļ	
		-						-	‡ +	
		-								
		-							ţ	
		-							ł	
		-							ł	
		-							ł	
		-							Į	
		-						-	ŀ	
		-							Į	
		-							ļ	
		-							Į	
		-							ļ	
		-							ļ	
		-							ļ	
		-						-	ļ	
		-								
		-							ļ	
		-							ļ	
		-							ł	
		-							ł	
		-							ļ	
		-							-	
N DETAIL	.5	0.2		Long Axis	Orientat	Remarks				
				Shoring /	Support:	None				
				Stability:	Stable					
				Groundw	ater (deso	ription):			nination I 0.20n	
									5.201	••

HTP03

ermule t wys Co		ouncil				Project No. 10026414 Easting (OS mE) 315647.54	93.57 Northing (OS mN) 294188.68	15/01/2019 End Date 15/01/2019) S	:25 heet 1	of
SAMPLE			TESTS	;	er		STRATA		Denth		Ins
Depth	Type/ No.	Depth	Type/ No.	Results	Water Strikes		escription	Legend	Depth (Thickness)		In: Ba
0 - 0.20	ES1	- - - -				MADE GROUND: Black and brown cl lithologies (bitumen seal).	ayey sandy angular GRAVEL of igneou	5	(0.20) 0.20	93.36	
		- - - -								+ + + + +	
		-									
		- - - -							-		
		• • •								-	
		-									
		- - - -								-	
		- 							-		
		-									
		 - - -								-	
		-								-	
									-		
		-								-	
		- - - -								-	
		- - - -							-	+	
		-									
		- - - -								+	
		- - - -									
		- - - 							-	‡ +	
	S	0.2		Long Axis	orientati	Remarks					
				Shoring /		None					
				Stability: Groundw		ription):				nination I 0.20n	
	Cymru	less otherw				Equipment Used	Contractor		gged By	Checke	

		ess Par Council	K			Project No. 10026414 Easting (OS mE) 315639.63	Ground Level (mAOD) 93.60 Northing (OS mN) 294181.74	Start Date 15/01/201 End Date 15/01/201	91 95	ale :25 heet 1	of
SAMPLE			TESTS				STRATA				
epth	Type/ No.	Depth	Type/ No.	Results	Water Strikes		Description	Legend	Depth (Thickness)	Level	Ins Ba
0 - 0.20	ES1	-				MADE GROUND: Soft brown sligh subangular fine to coarse of sands	tly sandy slightly gravelly CLAY. Gravity stone, limestone, concrete and brick.	vel is	× × (0.20)	93.40	
		-				5			0.20	93.40	<u> =</u>
		-								ŧ	
		-								ļ	
		-								ţ	
		-								ł	
		-								Į	
		-								ŧ	
		-								ŧ	
		-								ł	
		-								ţ	
		-								ŧ	
		-								Į	
		-								ŧ	
		-								ł	
		-								Ţ	
		-								ŧ	
		-								ł	
		-								ļ	
		-								ţ	
		-								ł	
		-								Į	
		-								ŧ	
		-								ŧ	
		-								ł	
		-								ŧ	
		-								ŧ	
		-								Į	
		-								ŧ	
		-								ł	
		-								Ţ	
		-								ŧ	
		-								ŧ	
		-								ļ	
		-								ţ	
		-								ł	
		-								Į	
		-								ŧ	
N DETAIL	LS					Remark	(S		1		
-		0.2			s Orientat	on:					
					Support:	None					
				Stability:		ription).			Terr	nination	Der
				Groundw	aler (UBS)	aipuolij.				0.20r	
Arcadis (House St Mellor	C		vise stated:	Groundw	ater (deso	ription):	Contractor		ogged By		20r

untv C	ouncil				Easting (OS mE) Northing (OS mN) 315632.20 294178.63	15/01/2010	9 9	heet 1	of
-	ouncil	тгото	、 、		Г	15/01/2013			
Type/	Depth	Type/		Vater trikes		Legend	Depth (Thickness)	Level	Inst Bac
No. ES1	Deptil	No.	Tresuits	> 0					
-	- - -				subangular fine to coarse of sandstone, limestone, concrete and brick.		(0.20) 0.20	92.77	
-	- - -							ţ	
-	-							ł	
-	-							ţ	
-	-							 	
	-							ļ	
-	-							+	
	- - -							ļ	
-	-							ļ	
-	-							Į	
-							-		
-	-							ļ	
-	-								
-	- -							ļ	
-	-								
-	-							ļ	
-							-	÷	
-	-							Ì	
-	-							+	
	-							ţ	
-	-							I	
-	-							ļ	
	- - -						-	Ť	
-	-								
	-							ļ	
-	-								
	-							Ì	
	-							‡ +	
.S	-				Remarks				
	0.2		Long Axis	s Orientati	on:				
			Shorina /	Support:	None				
			Stability:	Stable			Torm	nination	Den
			Groundw	ater (deso	ription):			0.20r	
	S Type/ No. ES1	Type/ No. ES1 - - - - - - - - - - - - - - - - - - -	Image: sympet TESTS Type/ Depth Type/ ES1	Image: state	S TESTS Type/ No. Depth Type/ No. Results ES1 Image: Signal structure Image: Signal structure Image: Signal structure Image: Signal structure Image: Signal structure Image: Signal structure Image: Signal structure Image: Signal structure Image: Signal structure Image: Signal structure Image: Signal structure Image: Signal structure Image: Signal structure Image: Signal structure Image: Signal structure Image: Signal structure Image: Signal structure Image: Signal structure Image: Signal structure Image: Signal structure Image: Signal structure Image: Signal structure Image: Signal structure Image: Signal structure Image: Signal structure Image: Signal structure Image: Signal structure Image: Signal structure Image: Signal structure Image: Signal structure Image: Signal structure Image: Signal structure Image: Signal structure Image: Signal structure Image: Signal structure Image: Signal structure Image: Signal structure Image: Signal structure Image: Signal structure Image: Signal structure Image: Signal structure Image: Signal structure Image: Signal structure Image: Signal structure Image: Si	S TESTS B & STRATA Type/ BST Opph Type/ No. Results MADE GROUND: Soft troom alighty sandy slightly gravely CLAY. Grave I subangular fire to coarse of sandabole. If mestore, concrete and bits. EST Image: Signal state stat	Image: Status TESTS Mage: Status STRATA Type: Type: No. Results Mathematical Status Description Legend Res Image: Status Status Description Legend Status Res Image: Status Image: Status <td>S TESTS Mage STAVA Upper line Logn <thlogn< th=""> Logn <thlogn< th=""> <thlogn< th=""> <thlogn< th=""></thlogn<></thlogn<></thlogn<></thlogn<></td> <td>3 TESTS 38 gene 2100/h Descriptor Legen (Tracks) Legen (Tracks)<!--</td--></td>	S TESTS Mage STAVA Upper line Logn Logn <thlogn< th=""> Logn <thlogn< th=""> <thlogn< th=""> <thlogn< th=""></thlogn<></thlogn<></thlogn<></thlogn<>	3 TESTS 38 gene 2100/h Descriptor Legen (Tracks) Legen (Tracks) </td

t		ess Parl council	k			10026414 Easting (OS mE) 315617.13	93.22 Northing (OS mN) 294160.10	15/01/20 ⁴ End Date 15/01/204	9 1 9 S	:25 heet 1	of ^r
SAMPLE	ES		TESTS		L ۵		STRATA				
Depth	Type/ No.	Depth	Type/ No.	Results	Water Strikes	Des	cription	Legen	Depth (Thickness)	Level	Ins Bao
0 - 0.20	No. ES1		No.		- 05	MADE GROUND: Soft brown sandy slig and wood fragments. Gravel is subangu			×	1	
						and wood fragments. Gravel is subangu concrete and brick.	lar fine to coarse of sandstone, lin	nestone,	(0.20)	93.02	
									0.20	93.02	-
										ţ	
		-								ŧ	
										I	
										ļ	
										ŧ	
										1	
										ļ	
										ţ	
										ţ	
										I	
		-								ţ	
										ţ	
		-								ł	
										1	
										÷	
										ţ	
		- - -								-	
		-								ļ	
										ţ	
		-								ţ	
										Į	
		-								ļ	
		-								ļ	
										ŧ	
										ļ	
		-								ţ	
		-								ļ	
		-								I	
										ļ	
		-								ţ	
		-								ţ	
		-								ł	
										ŧ	
		-								ł	
		-								ł	
		-								ł	
		-								ŧ	
		-								ţ	
		-								ł	
		-								ļ	
		-								ļ	
										+	
N DETAIL	S					Remarks					
_ 		0.2			s Orientati	on:					
				Shoring /	Support.	None					
				Stability:							
				Groundw		ription):			Tern	nination	Dep
										0.20r	n

HTP07

permule oermule owys Co			K			Project No. 10026414 Easting (OS mE) 315610.44	92.88 Northing (OS mN) 294163.74	15/01/2019 End Date 15/01/2019) 1:) S	ale 25 heet 1	of 1
SAMPLE	S		TESTS		er es		STRATA				Τ
Depth	Type/ No.	Depth	Type/ No.	Results	Water Strikes	Des	cription	Legend	Depth (Thickness)	Level	Ins Bac
.00 - 0.20	ES1	- - - -	110.			MADE GROUND: Soft dark brown sand plastic and wood fragments. Gravel is s limestone, concrete and brick.	ly slightly gravelly CLAY with occasiona ubangular fine to coarse of sandstone,		(0.20) 0.20	92.68	
	-	· · · · ·									
	-	· · · · ·							-		
	-	- - - - - - -									
	-	· 							-		
		- - - - - - -									
		- - - - - - -							-		
		- - - - - -									
	-	- - - - - - -							-		
	-	- - - - - -									
	-	- - 							-	Ļ	
	S	0.2	I	Long Axis						<u> </u>	<u> </u>
				Stability: Groundw	Stable					nination 0.20r	

Insulated Hand Tools

Arcadis Consulting (UK) Ltd

HTP08

permule ormule owys Co			k			10026414 Easting (OS mE) 315604.19	Ground Level (mAOD) 92.92 Northing (OS mN) 294154.77	15/01/2019 End Date 15/01/2019	9 1: 9 S	:25 heet 1	of 1
SAMPLES TESTS					r se		STRATA				Τ.
Depth	Type/ No.	Depth	Type/ No.	Results	Water Strikes	De	scription	Legend	Depth (Thickness)	Level	Ins Bac
.00 - 0.20	ES1	- - - - -				MADE GROUND: Soft dark brown san plastic and wood fragments. Gravel is limestone, concrete and brick.	dy slightly gravelly CLAY with occasion subangular fine to coarse of sandstone.	al	(0.20) 0.20	92.72	
		-									
		- - - - - - - - -									
		- - - - - - - - - -									
		-									
		- - - - - - - - -									
		- - - - - - - - -									
		- - - - - - - - - - -									
		-									
		-							-	ł	
	_S	0.2		Long Axis	s Orientati Support:						
				Stability: Groundw	Stable					nination 0.20r	

Insulated Hand Tools

Arcadis Consulting (UK) Ltd

KA CP

ARCADIS Trial Pit Photograph Sheet

Project **Abermule Business Park** Client **Powys County Council**

Job No 10026414 Easting (OS mE) 315624.75

Ground Level (mAOD) Start Date 92.12 Northing (OS mN) 294149.13

11/01/19 End Date 11/01/19

ARCADIS Trial Pit Photograph Sheet **SA01** Project Job No Ground Level (mAOD) Start Date 92.12 10026414 **Abermule Business Park** 11/01/19 Client Easting (OS mE) Northing (OS mN) End Date 11/01/19 **Powys County Council** 315624.75 294149.13 ARCADIS SA01 0.00 - 1.00mbgl OJECT NAME: ABERMULF PROJECT ID: ARCADIS 100 CHIL CLIENT: BOREHOLE ID: OWB 11 DEPTH (m): DATE: 1.00 TO SA01 0.00 - 1.00mbgl Logged By Checked By cadis Cymru Unless otherwise stated: Equipment Used Depth (m), Diameter (mm), Time (hhmm), 8T Excavator KA AW AGS Cardiff CF3 0EY Thickness (m), Level (mOD).

ARCADIS Trial Pit Photograph Sheet

Project Abermule Business Park Client Powys County Council Job No 10026414 Easting (OS mE) 315624.75 Ground Level (mAOD) 92.12 Northing (OS mN) 294149.13 Start Date 11/01/19 End Date 11/01/19 **SA01**

Intentionally Left Blank

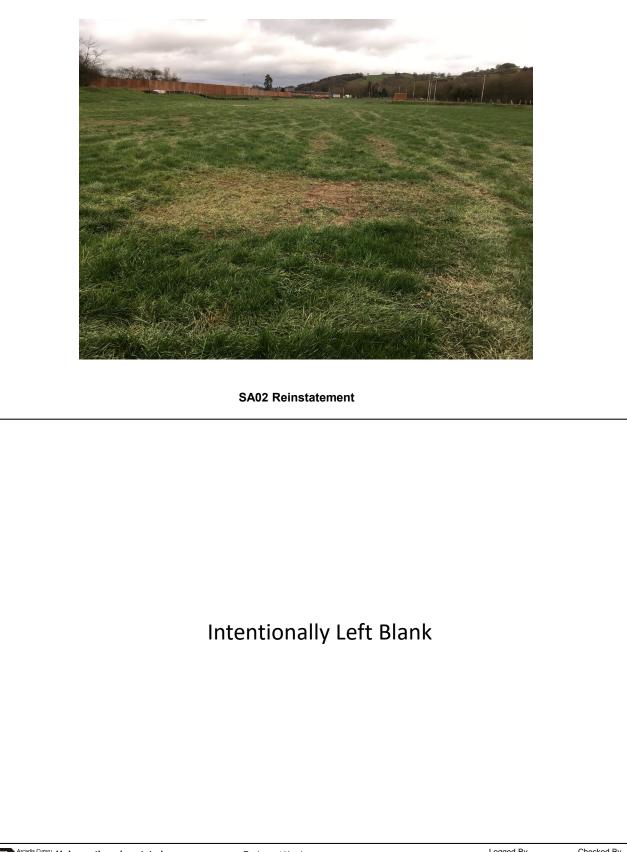
ARCADIS Trial Pit Photograph Sheet

Project **Abermule Business Park** Client **Powys County Council**

Job No 10026414 Easting (OS mE) 315637.41

Ground Level (mAOD) Start Date 92.09 Northing (OS mN) End Date 10/01/19 294133.42

10/01/19


Project Abermule Business Park Client Powys County Council Job No **10026414** Easting (OS mE) **315637.41** Ground Level (mAOD) 92.09 Northing (OS mN) 294133.42

Start Date 10/01/19 End Date 10/01/19

Project Abermule Business Park Client Powys County Council Job No 10026414 Easting (OS mE) 315637.41 Ground Level (mAOD) 92.09 Northing (OS mN) 294133.42

Start Date 10/01/19 End Date 10/01/19

Project Abermule Business Park Client Powys County Council

Job No	
10026414	
Easting (OS mE)	
315640.74	

 Ground Level (mAOD)
 Start Date

 92.08
 11/01/19

 Northing (OS mN)
 End Date

 294148.25
 11/01/19

				and set	
PROJECT NAM PROJECT ID: CLIENT: DEPTH (m):	10070414 POWB LL	BOREHOLE I DATE:	ARCADIS 0: 5408 11/1/19		
	SA03 0.00) – 0.90mbgl		alaan ah	
PROJECT NAME: PROJECT ID: CLIENT: DEPTH (m):	ABERMULE 1002044 ROW'S CC 0.00 TO: 0.9	BOREHOLE ID:	ARCADIS		

Project Abermule Business Park Client Powys County Council Job No 10026414 Easting (OS mE) 315640.74 Ground Level (mAOD) 92.08 Northing (OS mN) 294148.25 Start Date **11/01/19** End Date **11/01/19** **SA03**

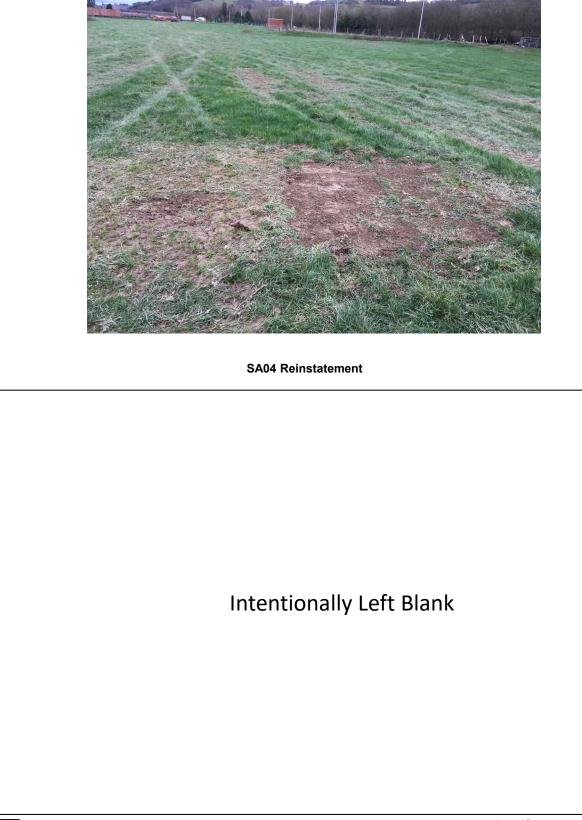
Intentionally Left Blank

Project **Abermule Business Park** Client **Powys County Council**

Job No 10026414 Easting (OS mE) 315662.68

Ground Level (mAOD) Start Date 92.02 Northing (OS mN) 294152.51

10/01/19 End Date 10/01/19


Thickness (m), Level (mOD).

Project Abermule Business Park Client Powys County Council Job No 10026414 Easting (OS mE) 315662.68 Ground Level (mAOD) 92.02 Northing (OS mN) 294152.51

Start Date

End Date 10/01/19

10/01/19

Project Abermule Business Park Client Powys County Council

AG

Job No
10026414
Easting (OS mE)
315651.13

 Ground Level (mAOD)
 Start Date

 91.93
 10/01/19

 Northing (OS mN)
 End Date

 294168.98
 10/01/19

PROJECT NAME: ABERMULE ARCADIS PROJECT ID: 100-2004 BOREHOLE ID: \$405 CLIENT: POW'S CL DATE: 10/1/9 DEPTH (m): 0.00 TO: 0.75 DATE: 10/1/9		
SA05 0.00 – 0.75mbgl		
	NET A	
PROJECT NAME: ABERMULC PROJECT ID: 100-7644 PROJECT ID: 100-7644 DATE: 101/19	ADIS	
SA05 0.00 – 0.75mbgl		
Arcadis Cymru House Unless otherwise stated: Equipment Used	Logged By	Checked By

Project Abermule Business Park Client Powys County Council Job No 10026414 Easting (OS mE) 315651.13 Ground Level (mAOD) 91.93 Northing (OS mN) 294168.98 Start Date 10/01/19 End Date 10/01/19

Project **Abermule Business Park** Client **Powys County Council**

Job No
10026414
Easting (OS mE)
315712.15

Ground Level (mAOD) Start Date 91.81 10/01/19 Northing (OS mN) End Date 10/01/19 294193.97

Project **Abermule Business Park** Client **Powys County Council**

Cardiff CF3 0EY

Thickness (m), Level (mOD).

Job No 10026414 Easting (OS mE) 315712.15

Ground Level (mAOD) 91.81 Northing (OS mN) 294193.97

10/01/19 End Date 10/01/19

Start Date

Project Abermule Business Park Client Powys County Council Job No 10026414 Easting (OS mE) 315712.15 Ground Level (mAOD) 91.81 Northing (OS mN) 294193.97

10/01/19 End Date 10/01/19

Start Date

ARCADIS Trial Pit Photograph Sheet Project Job No

Abermule Business Park Client **Powys County Council**

10026414 Easting (OS mE) 315750.15

Ground Level (mAOD) Start Date 92.15 Northing (OS mN) 294218.77

09/01/19 End Date 09/01/19

Project Abermule Business Park Client Powys County Council

Job No 10026414 Easting (OS mE) 315750.15 Ground Level (mAOD) 92.15 Northing (OS mN) 294218.77 Start Date 09/01/19 End Date 09/01/19

Project Abermule Business Park Client Powys County Council Job No 10026414 Easting (OS mE) 315750.15 Ground Level (mAOD) 92.15 Northing (OS mN) 294218.77

09/01/19 End Date 09/01/19

Start Date

Project **Abermule Business Park** Client **Powys County Council**

Job No	
10026414	
Easting (OS mE)	
315738.76	

Ground Level (mAOD) Start Date 92.18 10/01/19 Northing (OS mN) 294235.63

SA08

End Date 10/01/19

ARCADIS mai	i it i notogiaj			JAU0
Project Abermule Business Park	Job No 10026414	Ground Level (mAOD) 92.18	Start Date 10/01/19	
Client Powys County Council	Easting (OS mE) 315738.76	Northing (OS mN) 294235.63	End Date 10/01/19	
		ARCADIS		
PRO	JECT NAME ABERANG. JECT ID INCODUCIN ENT: ICOLOTIC	BOREHOLE ID: SACE DATE: ICITIE		
	РТН (т). С С С ТО. 1.00			
	TANK			
	The last	A ANDERS		
	all and a state			
Carlos Carlos		1 FALL		
	A Stratt			
	A REAL	ANY ANY		
	ALL IS	A March		
	Care Actors	The Love Hand		
		- Marken Marke		
1 - AND		THAT		
		and a second second		
	SA08 0.00 – 1.0	0mbgl		
POJECT NAME: AREPU				
PROJECT ID: 1002	JLE STATE		m SI)	
DEPTH (m): 00	B CC		ARCADIS	
The second second	TO: 1.00	BOREHOLE DATE:	ID: 5408 10/1/19	
	VE CHAR	CONTRACTOR OF		
A A A A A A A A A A A A A A A A A A A	E Annie Mart			
		and have of		
La Nix da in se				
		201 . You	Max	
		STATISTICS AND A	A ANDA A	
Y Lord A	S - S BA			
1 South 1		SP-STANK	Who are and a	
11日本学学 在这些 在这些 4			and the second second	
			NY AND	
	SA08 0.00 – 1.0	Ombgl		
Arcadis Cymru Uplace othorwise stated:		0mbgl	Logged By	Checked Rv
Arcade Cymu House House Sustaines Park Busines Park Busines Park Depth (m), Diameter (mm), Time Thickness (m), Level (mOD).	Equipment Used	Ombgi	Logged By KA	Checked By

Project Abermule Business Park Client Powys County Council Job No **10026414** Easting (OS mE) **315738.76** Ground Level (mAOD) 92.18 Northing (OS mN) 294235.63 Start Date 10/01/19 End Date 10/01/19

Project **Abermule Business Park** Client **Powys County Council**

AGS

Cardiff CF3 0EY

Thickness (m), Level (mOD).

Job No
10026414
Easting (OS mE)
315756.98

Ground Level (mAOD) Start Date 92.34 09/01/19 Northing (OS mN) End Date 09/01/19 294236.24

SA09

KA

Project Abermule Business Park Client **Powys County Council**

Job No 10026414 Easting (OS mE) 315756.98

Ground Level (mAOD) 92.34 Northing (OS mN) 294236.24

Start Date 09/01/19 End Date 09/01/19 **SA09**

٩GS

Cardiff CF3 0EY

Project Abermule Business Park Client Powys County Council Job No 10026414 Easting (OS mE) 315756.98 Ground Level (mAOD) 92.34 Northing (OS mN) 294236.24

Start Date 09/01/19 End Date 09/01/19

Project **Abermule Business Park** Client **Powys County Council**

Job No 10026414 Easting (OS mE) 315776.01

Start Date Ground Level (mAOD) 92.41 Northing (OS mN) 294238.61

09/01/19 End Date 09/01/19

Project Abermule Business Park Client Powys County Council Job No 10026414 Easting (OS mE) 315776.01 Ground Level (mAOD) 92.41 Northing (OS mN) 294238.61

Start Date 09/01/19 End Date 09/01/19

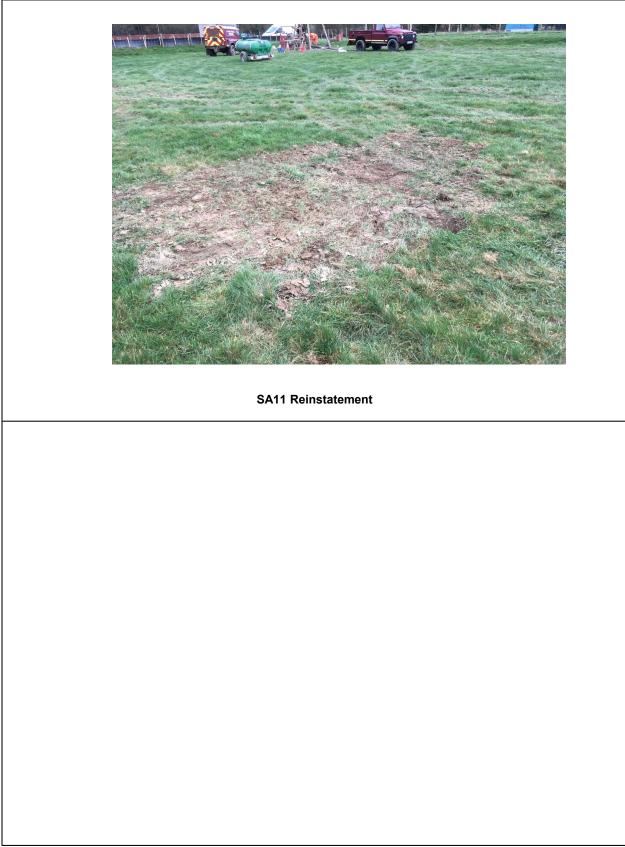
Project **Abermule Business Park** Client **Powys County Council**

Job No 10026414 Easting (OS mE) 315763.84

Ground Level (mAOD) 92.18 Northing (OS mN) 294251.89

09/01/19 End Date 09/01/19

Start Date



Project Job No Ground Level (mAOD) Start Date 92.18 10026414 **Abermule Business Park** 09/01/19 Client Easting (OS mE) Northing (OS mN) End Date 09/01/19 **Powys County Council** 315763.84 294251.89

Project Abermule Business Park Client Powys County Council Job No 10026414 Easting (OS mE) 315763.84 Ground Level (mAOD) 92.18 Northing (OS mN) 294251.89

Start Date 09/01/19 End Date 09/01/19

Project Abermule Business Park Client Powys County Council Job No 10026414 Easting (OS mE) 315821.99 Ground Level (mAOD) 92.06 Northing (OS mN) 294270.88

Start Date 07/01/19 End Date 07/01/19

ARCADIS Trial Pit Photograph Sheet **SA12** Project Job No Ground Level (mAOD) Start Date 92.06 10026414 **Abermule Business Park** 07/01/19 Client Easting (OS mE) Northing (OS mN) End Date 07/01/19 **Powys County Council** 315821.99 294270.88 ROJECT NAM ARCADIS PROJECT ID: CLIENT: .1): SAI2 7/1/19 BOREHOLE ID: DATE SA12 0.00 - 0.80mbgl ROJECT NAME: ABERMULE PROJECT ID: POWYS ARCADIS CLIENT BOREHOLE ID: SAIZ DEPTH (m 7/1/19 DATE 197 SA12 0.00 - 0.80mbgl Logged By Checked By rcadis Cymru Unless otherwise stated: Equipment Used AW

Project **Abermule Business Park** Client **Powys County Council**

Job No 10026414 Easting (OS mE) 315821.99

Ground Level (mAOD) 92.06 Northing (OS mN) 294270.88

Start Date 07/01/19 07/01/19

Logged By

KA

SA12 0.00 - 0.80mbgl

4		

Project **Abermule Business Park** Client **Powys County Council**

Job No
10026414
Easting (OS mE)
315834.10

Ground Level (mAOD) Start Date 92.01 07/01/19 Northing (OS mN) 294292.49

SA13

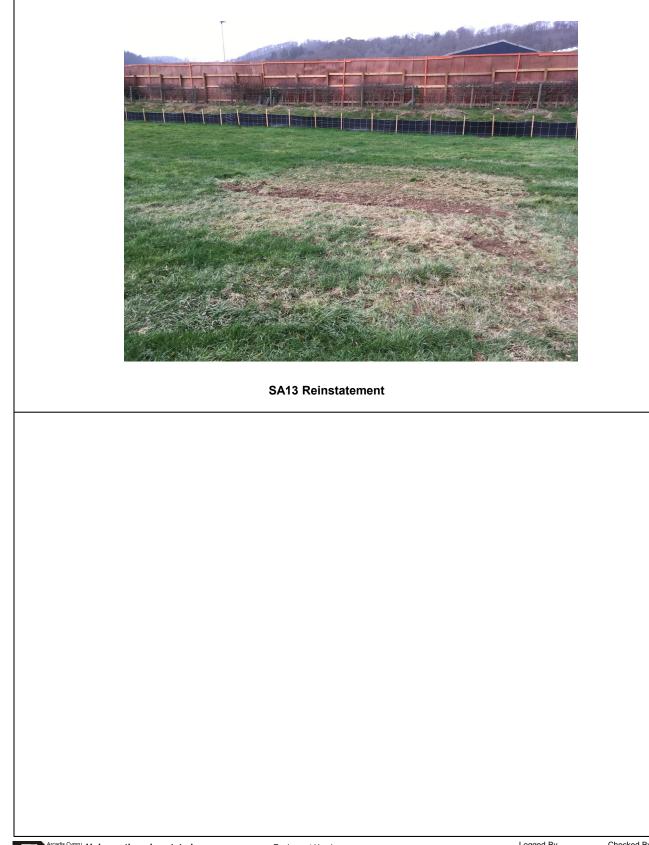
End Date 07/01/19

Project Abermule Business Park Client Powys County Council

Job No 10026414 Easting (OS mE) 315834.10 Ground Level (mAOD) 92.01 Northing (OS mN) 294292.49

07/01/19 End Date 07/01/19

Start Date



Project **Abermule Business Park** Client **Powys County Council**

Job No 10026414 Easting (OS mE) 315834.10

Ground Level (mAOD) Start Date 92.01 Northing (OS mN) 294292.49

07/01/19 End Date 07/01/19

Project **Abermule Business Park** Client **Powys County Council**

Job No 10026414 Easting (OS mE) 315835.74

Start Date Ground Level (mAOD) 92.30 Northing (OS mN) 294267.67

08/01/19 End Date 08/01/19

SA14

Project Abermule Business Park Client Powys County Council Job No **10026414** Easting (OS mE) **315835.74** Ground Level (mAOD) 92.30 Northing (OS mN) 294267.67

08/01/19 End Date 08/01/19

Start Date

Project Abermule Business Park Client Powys County Council Job No 10026414 Easting (OS mE) 315835.74 Ground Level (mAOD) 92.30 Northing (OS mN) 294267.67

Start Date 08/01/19 End Date 08/01/19

Project **Abermule Business Park** Client **Powys County Council**

Job No 10026414 Easting (OS mE) 315853.10

Start Date Ground Level (mAOD) 92.32 Northing (OS mN) 294260.61

08/01/19 End Date 08/01/19

ARCADIS Trial Pit Photograph Sheet **SA15** Project Job No Ground Level (mAOD) Start Date 92.32 10026414 **Abermule Business Park** 08/01/19 Client Easting (OS mE) Northing (OS mN) End Date 08/01/19 **Powys County Council** 315853.10 294260.61 ARCADIS SA15 0.00 - 1.10mbgl PROJECT NAME ABERMULL ARCADIS PROJECT ID: 10076414 POWYS BOREHOLE ID: DATE: 8/1/10 CLIENT DATE DEPTH (m) 1.10 00 то

SA15 0.00 – 1.10mbgl

Project Abermule Business Park Client Powys County Council Job No 10026414 Easting (OS mE) 315853.10 Ground Level (mAOD) 92.32 Northing (OS mN) 294260.61 Start Date 08/01/19 End Date 08/01/19 **SA15**

Project **Abermule Business Park** Client **Powys County Council**

Job No 10026414 Easting (OS mE) 315835.34

Start Date Ground Level (mAOD) 92.42 Northing (OS mN) 294248.99

08/01/19 End Date 08/01/19 **SA16**

ARCADIS Trial Pit Photograph Sheet **SA16** Project Job No Ground Level (mAOD) Start Date 92.42 10026414 **Abermule Business Park** 08/01/19 Client Easting (OS mE) Northing (OS mN) End Date 08/01/19 **Powys County Council** 315835.34 294248.99 ARCADIS SA16 0.00 - 1.10mbgl POJECT NAME PROJECT ID. CLIENT ARCADIS BOREHOLE ID: DEPTH (DATE: то SA16 0.00 – 1.10mbgl Cadis Cymrul Unless otherwise stated: Equipment Used Wellows Depth (m), Diameter (mm), Time (hhmm), Nsiness Park Time (m), Linux (m), Linux (m)) Logged By Checked By KA AW AGS Cardiff CF3 0EY Thickness (m), Level (mOD).

Project Abermule Business Park Client Powys County Council Job No **10026414** Easting (OS mE) **315835.34** Ground Level (mAOD) 92.42 Northing (OS mN) 294248.99

Start Date 08/01/19 End Date 08/01/19 **SA16**

Project Abermule Business Park Client

Powys County Council

Job No 10026414 Easting (OS mE) 315543.921
 Ground Level (mAOD)
 Start Date

 91.822
 14/01/19

 Northing (OS mN)
 End Date

 294055.333
 14/01/19

Project

Client

Abermule Business Park

Powys County Council

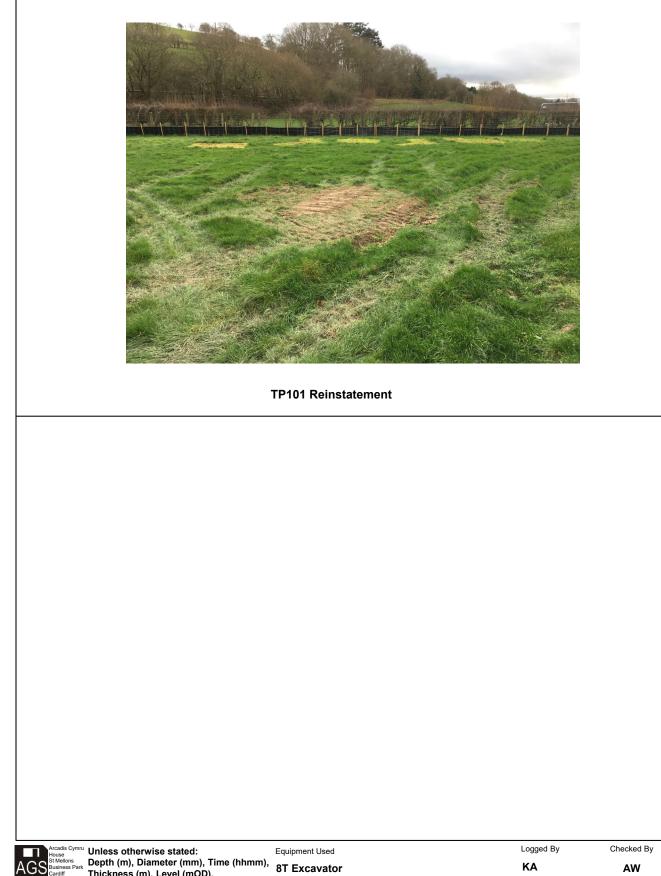
Job No 10026414

Easting (OS mE)

315543.921

Ground Level (mAOD)	Start Date
91.822	14/01/19
Northing (OS mN)	End Date
294055.333	14/01/19

Project **Abermule Business Park** Client **Powys County Council**


<u>AG</u>S

Cardiff CF3 0EY

Thickness (m), Level (mOD).

Job No 10026414 Easting (OS mE) 315543.921 Ground Level (mAOD) Start Date 91.822 14/01/19 Northing (OS mN) End Date 14/01/19 294055.333

TP101

KA

Project Abermule Business Park Client Powys County Council

Job No
10026414
Easting (OS mE)
315564.28

 Ground Level (mAOD)
 Start Date

 91.67
 14/01/19

 Northing (OS mN)
 End Date

 294052.13
 14/01/19

Project Abermule Business Park Client Powys County Council

Job No
10026414
Easting (OS mE)
315564.28

 Ground Level (mAOD)
 Start Date

 91.67
 14/01/19

 Northing (OS mN)
 End Date

 294052.13
 14/01/19

TP102

<image><caption>

Project **Abermule Business Park** Client **Powys County Council**

Job No 10026414 Easting (OS mE) 315574.59

Ground Level (mAOD) Start Date 91.58 Northing (OS mN) 294081.75

14/01/19 End Date 14/01/19

Project **Abermule Business Park** Client **Powys County Council**

Job No 10026414 Easting (OS mE) 315574.59

Ground Level (mAOD) Start Date 91.58 Northing (OS mN) 294081.75

14/01/19 End Date 14/01/19

Project Abermule Business Park Client Powys County Council Job No **10026414** Easting (OS mE) **315590.50** Ground Level (mAOD) 91.60 Northing (OS mN) 294078.23

Start Date 14/01/19 End Date 14/01/19

KA

Arcadis Cy House St Mellons Business F Cardiff CF3 DEY

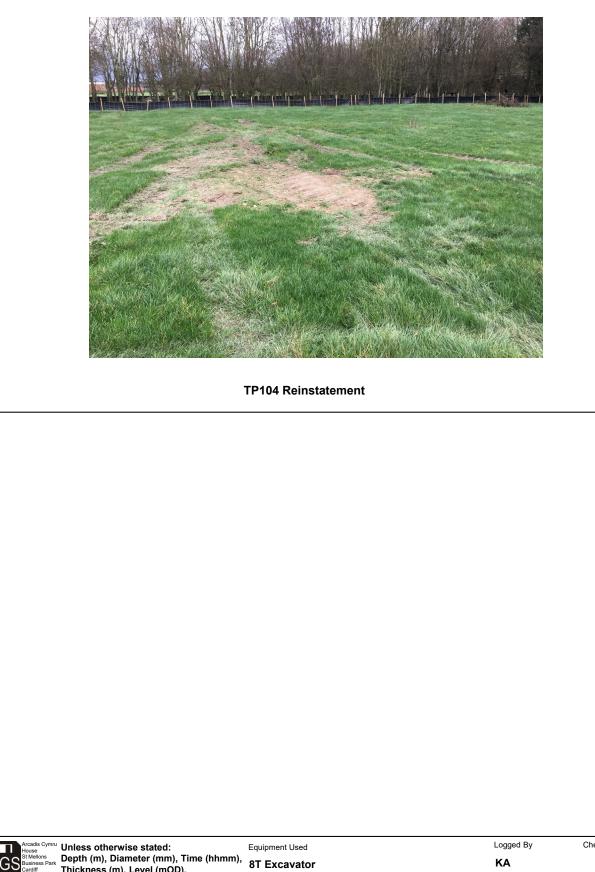
Project **Abermule Business Park** Client **Powys County Council**

٩GS

Cardiff CF3 0EY

Thickness (m), Level (mOD).

Job No 10026414 Easting (OS mE) 315590.50


Ground Level (mAOD) 91.60 Northing (OS mN) 294078.23

Start Date

End Date 14/01/19

14/01/19

TP104

KA

Project Abermule Business Park Client Powys County Council

Job No
10026414
Easting (OS mE)
315660.283

 Ground Level (mAOD)
 Start Date

 93.747
 15/01/19

 Northing (OS mN)
 End Date

 294193.35
 15/01/19

HTP01

Intentionally Left Blank

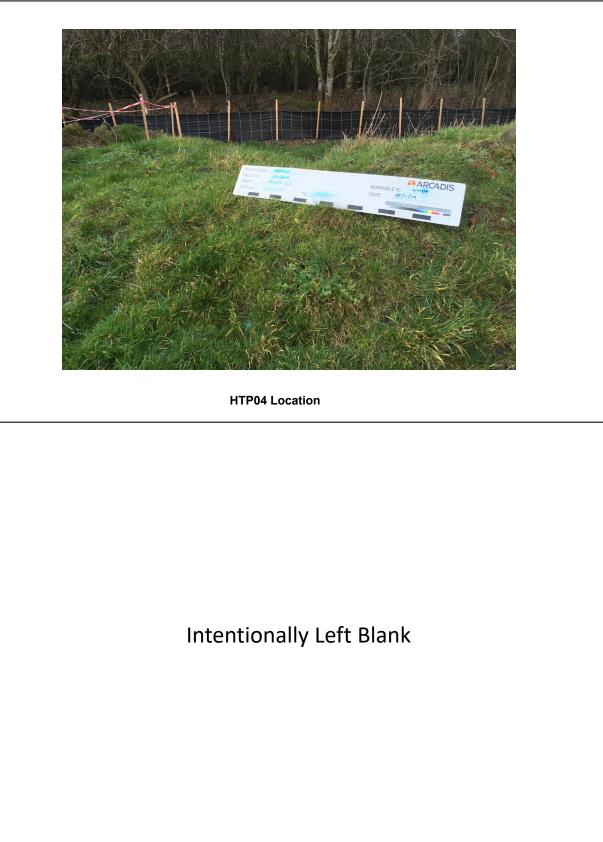


Project **Abermule Business Park** Client **Powys County Council**

Job No 10026414 Easting (OS mE) 315649.63

Start Date Ground Level (mAOD) 93.738 Northing (OS mN) 294183.406

15/01/19 End Date 15/01/19 **HTP02**


Project **Abermule Business Park** Client **Powys County Council**

Job No 10026414 Easting (OS mE) 315639.63

Start Date Ground Level (mAOD) 93.597 Northing (OS mN) End Date 15/01/19 294181.737

15/01/19

HTP04

Project **Abermule Business Park** Client **Powys County Council**

٩GS


F3 0EY

Thickness (m), Level (mOD).

Job No 10026414 Easting (OS mE) 315632.196

Start Date Ground Level (mAOD) 92.967 15/01/19 Northing (OS mN) End Date 15/01/19 294178.628

HTP05

ARCADIS Trial Pit Location Sheet **HTP06** Job No Start Date Project Ground Level (mAOD) 10026414 93.215 **Abermule Business Park** 15/01/19 Client Easting (OS mE) Northing (OS mN) End Date 15/01/19 **Powys County Council** 315617.128 294160.098 **HTP06** Location Intentionally Left Blank Logged By Checked By Equipment Used

Project Abermule Business Park Client Powys County Council

Job No
10026414
Easting (OS mE)
315610.438

 Ground Level (mAOD)
 Start Date

 92.878
 15/01/19

 Northing (OS mN)
 End Date

 294163.74
 15/01/19

HTP07

<image><section-header>

Intentionally Left Blank

HTP08

Filipect
Abermule Business Park
Client
Powys County Council

Job No 10026414 Easting (OS mE) 315604.188 Ground Level (mAOD) 92.915 Northing (OS mN) 294154.771 Start Date

End Date 15/01/19

15/01/19

Intentionally Left Blank

	I Pit Soal	kaway Te	est			9	/.	ARC	ADIS	5 for i buil	<mark>ign & Consultancy</mark> natural and t assets
Project		e Business Park						Status		L	OCATION ID
Project I	D 1002641	4						PRE	LIMINARY		SA01
-	it Details										
	Test 1	Test 2 Test 3		Ground	Level		92.1	2 mAOD	Date Excava	ated	11/01/2019
De	pth 1.00			Coord	dinates	315	624.7	5 mE	Date Test	ed	11/01/2019
Wi	dth 0.50			COOR	linates	294	149.1	3 mN			
Len	ngth 1.80										
Fest 1											
Time	Depth to Water	Test Paramet	ers						d Time (min)		
min	m bgl		0.20		0.00	0	50	100	150	20	0 250
0 5	0.14 0.20	75% esd (mbgl) 50% esd (mbgl)	0.36 0.57		0.00					Test	t Data
5 10	0.20	25% esd (mbgl)	0.57	_	0.20	•			••••		t Fit Line
20	0.32	A_{s50} (m ²)	2.88	lgd r	0.30					- 75%	6 ESD
30	0.38	$V_{p75-25} (m^3)$	0.39	el m	0.40					25%	6 ESD
45	0.46	t ₇₅ (min)	2.6E+01	Lev	0.50 0.60		•••	••••			
60	0.51	t ₂₅ (min)	1.5E+02	Water Level m bgl	0.70			•••	••••••		
70	0.56	Data Fit R ²	0.995	Ŵ	0.80						
120	0.70				0.90		_			-	
180	0.85				1.00						
	Infiltration rate	f (ms ⁻¹) 1.771	E-05			Total	effect	ive storage	depth (esd) (m)	0.86	5
est 2											
Time	Depth to Water	Test Paramet	ers						d Time (min)		00 100
min	m bgl				-2	20 0	•	20	40 60		80 100
0 7		75% esd (mbgl)				0.10				• Tes	st Data
, 15		50% esd (mbgl) 25% esd (mbgl)				0.20					st Fit Line
25		$A_{s50} (m^2)$		n bgl		0.30					% ESD % ESD
30		V _{p75-25} (m ³)		Water Level m		0.40 0.50				257	/o_ESD
40		t ₇₅ (min)		, Lev		0.60					
45		t ₂₅ (min)		ater		0.70					
60		Data Fit R ²		\geq		0.80					
90						0.90					
						1.00					
		f (ms ⁻¹) NO VALI	D DATA			Total	effect	ive storage	depth (esd) (m)		
est 3											
Time	Depth to Water	Test Paramet	ers				-		d Time (min)	25	20 27
min 0	m bgl	75% esd (mbgl)			-5	5 0	5	10	15 20	25	30 35
2		50% esd (mbgl)				0.10				• Tes	t Data
4		25% esd (mbgl)		_		0.20					t Fit Line
6		A_{s50} (m ²)		ן bg		0.30					6 ESD
8		$V_{p75-25} (m^3)$		el m		0.40				- 25%	6 ESD
10		t ₇₅ (min)		Water Level m bgl		0.50 0.60					
15		t ₂₅ (min)		ater		0.70					
20		Data Fit R ²		M		0.80					
25						0.90					
30						1.00		I			
	Infiltration rate							ive storage	depth (esd) (m)	0.00)
arried o	out by	Notes: V	Vater gravi	ty fed thro	ough 2"	pipe from IBC			Logged		Checked
rcadis	Consulting (UK) L	td								KA	

	Pit Soak	away Tes	st			6	<u>م</u> (S	esign & Consultar or natural and uilt assets	ncy
Project		Business Park						Status			LOCATION II	D
-	10026414								ELIMINARY		SA02	_
Project ID								FN	LIIVIIINANT		JAUZ	
IIIdi Pit		act 2 Tact 2		Cround			02.00	mAOD	Date Exc	avatad	10/01/2	2010
Dept		est 2 Test 3	ľ	Ground	Levei	2	92.09 15637.41		Date Exc Date T		10/01/2	
Widt				Coord	linates		94133.42		Date i	esteu	10/01/2	1019
						Z	94133.42	ITIN				
Leng Test 1	th 1.70											
	Depth to Water	Test Parameter										
min	m bgl	lest rataineter	5		()	50	Elaps 100	ed Time (mir 150	1) 200	250 3	00
0	-	75% esd (mbgl)	0.25		0.00							7
1		50% esd (mbgl)	0.50		0.10							_
2		25% esd (mbgl)	0.75		0.20		•••••••					
5	0.06	$A_{s50} (m^2)$	3.05	bg	0.30					• • • • • • •		
10	0.08	V_{p75-25} (m ³)	0.43	Water Level m bgl							est Data	
15	0.09		.6E+02	Lev	0.40						est Fit Line]
20	0.10		.2E+03	ter	0.50						5% ESD	-
25	0.11	Data Fit R ²	0.998	Wa	0.60						5% ESD	-
50	0.15	Bata new	0.550		0.70							-
70	0.18				0.80							
70	Infiltration rate f	(ms ⁻¹) 1.13E-(06			Tot	al effectiv	ve storage	e depth (esd)	(m) 1.(00	
Test 2										()		
	Depth to Water	Test Parameter	rs.					Flanc	ed Time (min)		
min	m bgl		5		-1	.0	0	10	20	30	40 5	50
0	7	75% esd (mbgl)				0.00						1
2	5	50% esd (mbgl)				0.10					est Data	-
5	2	25% esd (mbgl)		bgl		0.20					est Fit Line 5% ESD	
10		$A_{s50} (m^2)$		p m		0.30 0.40					5% ESD	
15		V _{p75-25} (m ³)		vel		0.50						_
20		t ₇₅ (min)		Water Level m		0.60						-
25		t ₂₅ (min)		ater		0.70						-
30		Data Fit R ²		\geq		0.80						
35						0.90						-
40						1.00	1					
	Infiltration rate f	(ms ⁻¹) NO VALID	DATA			Tot	al effectiv	ve storage	e depth (esd)	(m)		
Test 3												
	Depth to Water	Test Parameter	ſS					Flanse	d Time (min)		
min	m bgl				-5		5	10	15 20	25	30 3	5
0	7	75% esd (mbgl)			ſ	0.00						
2	5	50% esd (mbgl)			-	0.10					est Data est Fit Line	
4	2	25% esd (mbgl)		<u>p</u>		0.20 0.30					5% ESD	
6		A _{s50} (m ²)		Water Level m bgl		0.30					5% ESD	
8		V _{p75-25} (m ³)		vel		0.50						
10		t ₇₅ (min)		r Le	-	0.60						
15		t ₂₅ (min)		ate	-	0.70						
20		Data Fit R ²		\geq	-	0.80						
25						0.90						
30					L	1.00					(
	Infiltration rate f							ve storage	e depth (esd)	(m) 0.0	00	
Carried ou	it by	Notes: Wat	ter gravit	y fed thro	ough 2"	pipe from I	BC.		Logg	ed	Checked	
Arcadis C	onsulting (UK) Lto	1								KA		

roject	Abermu	le Business Park						Status		10	DCATION ID
roject II									ELIMINARY		SA03
,	it Details										5/105
- Turri	Test 1	Test 2 Test 3		Ground	Level		92.08	3 mAOD	Date Excava	ated	11/01/201
Dep		0.80					315640.74	1 mE	Date Test		11/01/201
Wid		0.50		Coor	dinates		294148.25				, - , -
Len	gth 1.70	1.70									
est 1	5										
Time	Depth to Water	Test Parame	eters			2	20	Elaps	ed Time (min)	60	
min	m bgl	75% and (mhal)	0.22		0.00	0	20		40	60	80
0	0.00	75% esd (mbgl)	0.23		0.10					Test	: Data
5	0.17	50% esd (mbgl)	0.45		0.10	· •.			•••		t Fit Line
10	0.22	25% esd (mbgl)	0.68	lgd	0.30						ESD
15	0.29	$A_{s50} (m^2)$	2.83	Water Level m bgl	0.40		· · · •.	•••		- 25%	SESD
20	0.35	$V_{p75-25} (m^3)$	0.38	eve	0.50			· · · · · .	•••		
30	0.47	t ₇₅ (min)	9.5E+00	er L	0.60						
40	0.53	t ₂₅ (min)	5.8E+01	Vat	0.70				`		
50	0.61	Data Fit R ²	0.993	~	0.80						· • •
60	0.69				0.90						
75	0.80	• • •1>									
	Infiltration rate	ef (ms ⁻) 4.67	'E-05			Т	otal effecti	ve storage	e depth (esd) (m)	0.90)
est 2											
Time min	Depth to Water m bgl	Test Parame	eters			D	20	Elaps 40	ed Time (min) 60	80	100
0	0.00	75% esd (mbgl)	0.20		0.00	•	20	40	00		100
0	0.00	75% esu (inpgi)	0.20								
7	0.11	EOO/ and (mhal)	0.40		0.10	<u></u>				 Tes 	t Data
7	0.11	50% esd (mbgl)	0.40	_	0.10 0.20	•••••••••••••••••••••••••••••••••••••••				Bes	st Fit Line
15	0.22	25% esd (mbgl)	0.60	lgd r		•••••••••••••••••••••••••••••••••••••••	•			Bes – – 759	st Fit Line % ESD
15 25	0.22 0.30	25% esd (mbgl) A _{s50} (m ²)	0.60 2.61	el m bgl	0.20	••••••••	••••	••••		Bes	st Fit Line % ESD
15 25 30	0.22 0.30 0.37	25% esd (mbgl) A _{s50} (m ²) V _{p75-25} (m ³)	0.60 2.61 0.34		0.20 0.30	· · · · · · · · · · · · · · · · · · ·	••••	•••••••••••••••••••••••••••••••••••••••		Bes – – 759	st Fit Line % ESD
15 25 30 40	0.22 0.30 0.37 0.43	25% esd (mbgl) $A_{s50} (m^2)$ $V_{p75-25} (m^3)$ $t_{75} (min)$	0.60 2.61 0.34 1.3E+01		0.20 0.30 0.40		••••	••••	•••••••	Bes 759 259	st Fit Line % ESD
15 25 30 40 45	0.22 0.30 0.37 0.43 0.48	25% esd (mbgl) $A_{s50} (m^2)$ $V_{p75-25} (m^3)$ $t_{75} (min)$ $t_{25} (min)$	0.60 2.61 0.34 1.3E+01 6.1E+01	Vater Level	0.20 0.30 0.40 0.50		• • •	•••••••		Bes 759 259	st Fit Line % ESD
15 25 30 40 45 60	0.22 0.30 0.37 0.43 0.48 0.59	25% esd (mbgl) $A_{s50} (m^2)$ $V_{p75-25} (m^3)$ $t_{75} (min)$	0.60 2.61 0.34 1.3E+01	Vater Level	0.20 0.30 0.40 0.50 0.60		· · · · · · · · · · · · · · · · · · ·	••••	•••••••	Bes 759 259	st Fit Line % ESD
15 25 30 40 45	0.22 0.30 0.37 0.43 0.48	25% esd (mbgl) $A_{s50} (m^2)$ $V_{p75-25} (m^3)$ $t_{75} (min)$ $t_{25} (min)$	0.60 2.61 0.34 1.3E+01 6.1E+01	Vater Level	0.20 0.30 0.40 0.50 0.60 0.70			•••••••	•••••••	Bes 759 259	st Fit Line % ESD
15 25 30 40 45 60	0.22 0.30 0.37 0.43 0.48 0.59 0.80	25% esd (mbgl) $A_{s50} (m^2)$ $V_{p75-25} (m^3)$ $t_{75} (min)$ $t_{25} (min)$ Data Fit R ²	0.60 2.61 0.34 1.3E+01 6.1E+01 0.996	Vater Level	0.20 0.30 0.40 0.50 0.60 0.70 0.80					759 259	st Fit Line % ESD % ESD
15 25 30 40 45 60 90	0.22 0.30 0.37 0.43 0.48 0.59	25% esd (mbgl) $A_{s50} (m^2)$ $V_{p75-25} (m^3)$ $t_{75} (min)$ $t_{25} (min)$ Data Fit R ²	0.60 2.61 0.34 1.3E+01 6.1E+01	Vater Level	0.20 0.30 0.40 0.50 0.60 0.70 0.80				•••••••	759 259	st Fit Line % ESD % ESD
15 25 30 40 45 60 90	0.22 0.30 0.37 0.43 0.48 0.59 0.80 Infiltration rate	25% esd (mbgl) $A_{550} (m^2)$ $V_{p75-25} (m^3)$ $t_{75} (min)$ $t_{25} (min)$ Data Fit R ² ef (ms ⁻¹) 4.53	0.60 2.61 0.34 1.3E+01 6.1E+01 0.996 3E-05	Vater Level	0.20 0.30 0.40 0.50 0.60 0.70 0.80			ve storage	e depth (esd) (m)	759 259	st Fit Line % ESD % ESD
15 25 30 40 45 60 90	0.22 0.30 0.37 0.43 0.48 0.59 0.80	25% esd (mbgl) $A_{s50} (m^2)$ $V_{p75-25} (m^3)$ $t_{75} (min)$ $t_{25} (min)$ Data Fit R ²	0.60 2.61 0.34 1.3E+01 6.1E+01 0.996 3E-05	Vater Level	0.20 0.30 0.40 0.50 0.60 0.70 0.80	Ţ	otal effecti	ve storage		759 259	st Fit Line % ESD % ESD
15 25 30 40 45 60 90 • • • • • • • • • •	0.22 0.30 0.37 0.43 0.48 0.59 0.80 Infiltration rate	25% esd (mbgl) $A_{550} (m^2)$ $V_{p75-25} (m^3)$ $t_{75} (min)$ $t_{25} (min)$ Data Fit R ² ef (ms ⁻¹) 4.53	0.60 2.61 0.34 1.3E+01 6.1E+01 0.996 3E-05	Vater Level	0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90	Ţ	otal effecti	ve storage Elapse	e depth (esd) (m)	Bes - 759 - 259 0.80	st Fit Line % ESD % ESD
15 25 30 40 45 60 90 •••••••••••••••••••••••••••••••••	0.22 0.30 0.37 0.43 0.48 0.59 0.80 Infiltration rate	25% esd (mbgl) A _{s50} (m ²) V _{p75-25} (m ³) t ₇₅ (min) t ₂₅ (min) Data Fit R ² ef (ms ⁻¹) 4.53 Test Parame	0.60 2.61 0.34 1.3E+01 6.1E+01 0.996 3E-05	Vater Level	0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90	 T	otal effecti	ve storage Elapse	e depth (esd) (m)	Bes - 759 - 259 - 259 0.80 25 - Tes	st Fit Line % ESD % ESD 30 35
15 25 30 40 45 60 90 Time min 0	0.22 0.30 0.37 0.43 0.48 0.59 0.80 Infiltration rate	25% esd (mbgl) A ₅₅₀ (m ²) V _{p75-25} (m ³) t ₇₅ (min) t ₂₅ (min) Data Fit R ² ef (ms ⁻¹) 4.53 Test Parame 75% esd (mbgl)	0.60 2.61 0.34 1.3E+01 6.1E+01 0.996 3E-05	Water Level	0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90	T 5 C 0.00 0.10 0.20	otal effecti	ve storage Elapse	e depth (esd) (m)	Bes - 759 - 259 0.80 25 Bes	st Fit Line % ESD % ESD % ESD 9 30 35 t Data t Fit Line
15 25 30 40 45 60 90 Sect 3 Time min 0 2	0.22 0.30 0.37 0.43 0.48 0.59 0.80 Infiltration rate	25% esd (mbgl) $A_{s50} (m^2)$ $V_{p75-25} (m^3)$ $t_{75} (min)$ $t_{25} (min)$ Data Fit R ² e f (ms⁻¹) 4.53 Test Parame 75% esd (mbgl) 50% esd (mbgl) 25% esd (mbgl)	0.60 2.61 0.34 1.3E+01 6.1E+01 0.996 3E-05	Water Level	0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90	T 5 C 0.00 0.10 0.20 0.30	otal effecti	ve storage Elapse	e depth (esd) (m)	 Bes 75% 25% Tes: Bes 75% 	st Fit Line % ESD % ESD 30 35 t Data t Fit Line % ESD
15 25 30 40 45 60 90 est 3 Time min 0 2 4	0.22 0.30 0.37 0.43 0.48 0.59 0.80 Infiltration rate	25% esd (mbgl) $A_{s50} (m^2)$ $V_{p75-25} (m^3)$ $t_{75} (min)$ $t_{25} (min)$ Data Fit R ² ef (ms ⁻¹) 4.53 Test Parame 75% esd (mbgl) 50% esd (mbgl) 25% esd (mbgl) $A_{s50} (m^2)$	0.60 2.61 0.34 1.3E+01 6.1E+01 0.996 3E-05	Water Level	0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90	T 5 C 0.00 0.10 0.20 0.30 0.40	otal effecti	ve storage Elapse	e depth (esd) (m)	 Bes 75% 25% Tes: Bes 75% 	st Fit Line % ESD % ESD % ESD 9 30 35 t Data t Fit Line
15 25 30 40 45 60 90 Pest 3 Time min 0 2 4 6 8	0.22 0.30 0.37 0.43 0.48 0.59 0.80 Infiltration rate	25% esd (mbgl) $A_{s50} (m^2)$ $V_{p75-25} (m^3)$ $t_{75} (min)$ $t_{25} (min)$ Data Fit R ² ef (ms ⁻¹) 4.53 Test Parame 75% esd (mbgl) 50% esd (mbgl) 25% esd (mbgl) $A_{s50} (m^2)$ $V_{p75-25} (m^3)$	0.60 2.61 0.34 1.3E+01 6.1E+01 0.996 3E-05	Water Level	0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90	T 5 C 0.00 0.10 0.20 0.30 0.40 0.50	otal effecti	ve storage Elapse	e depth (esd) (m)	 Bes 75% 25% Tes: Bes 75% 	st Fit Line % ESD % ESD 30 35 t Data t Fit Line % ESD
15 25 30 40 45 60 90 Time min 0 2 4 6 8 10	0.22 0.30 0.37 0.43 0.48 0.59 0.80 Infiltration rate	25% esd (mbgl) $A_{s50} (m^2)$ $V_{p75-25} (m^3)$ $t_{75} (min)$ $t_{25} (min)$ Data Fit R ² ef (ms ⁻¹) 4.53 Test Parame 75% esd (mbgl) 50% esd (mbgl) 25% esd (mbgl) $A_{s50} (m^2)$ $V_{p75-25} (m^3)$ $t_{75} (min)$	0.60 2.61 0.34 1.3E+01 6.1E+01 0.996 3E-05	Water Level	0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90	T 5 C 0.00 0.10 0.20 0.30 0.40 0.50 0.60	otal effecti	ve storage Elapse	e depth (esd) (m)	 Bes 75% 25% Tes: Bes 75% 	st Fit Line % ESD % ESD 30 35 t Data t Fit Line % ESD
15 25 30 40 45 60 90 90 Time min 0 2 4 6 8 10 15	0.22 0.30 0.37 0.43 0.48 0.59 0.80 Infiltration rate	25% esd (mbgl) $A_{s50} (m^2)$ $V_{p75-25} (m^3)$ $t_{75} (min)$ $t_{25} (min)$ Data Fit R ² ef (ms ⁻¹) 4.53 Test Parame 75% esd (mbgl) 50% esd (mbgl) 25% esd (mbgl) $A_{s50} (m^2)$ $V_{p75-25} (m^3)$ $t_{75} (min)$ $t_{25} (min)$	0.60 2.61 0.34 1.3E+01 6.1E+01 0.996 3E-05	Vater Level	0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90	T 5 C 0.00 0.10 0.20 0.30 0.40 0.50	otal effecti	ve storage Elapse	e depth (esd) (m)	 Bes 75% 25% Tes: Bes 75% 	st Fit Line % ESD % ESD 30 35 t Data t Fit Line % ESD
15 25 30 40 45 60 90 90 Time min 0 2 4 6 8 10 15 20	0.22 0.30 0.37 0.43 0.48 0.59 0.80 Infiltration rate	25% esd (mbgl) $A_{s50} (m^2)$ $V_{p75-25} (m^3)$ $t_{75} (min)$ $t_{25} (min)$ Data Fit R ² ef (ms ⁻¹) 4.53 Test Parame 75% esd (mbgl) 50% esd (mbgl) 25% esd (mbgl) $A_{s50} (m^2)$ $V_{p75-25} (m^3)$ $t_{75} (min)$	0.60 2.61 0.34 1.3E+01 6.1E+01 0.996 3E-05	Water Level	0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90	T 5 C 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70	otal effecti	ve storage Elapse	e depth (esd) (m)	 Bes 75% 25% Tes: Bes 75% 	st Fit Line % ESD % ESD 30 35 t Data t Fit Line % ESD
15 25 30 40 45 60 90 est 3 Time min 0 2 4 6 8 10 15 20 25	0.22 0.30 0.37 0.43 0.48 0.59 0.80 Infiltration rate	25% esd (mbgl) $A_{s50} (m^2)$ $V_{p75-25} (m^3)$ $t_{75} (min)$ $t_{25} (min)$ Data Fit R ² ef (ms ⁻¹) 4.53 Test Parame 75% esd (mbgl) 50% esd (mbgl) 25% esd (mbgl) $A_{s50} (m^2)$ $V_{p75-25} (m^3)$ $t_{75} (min)$ $t_{25} (min)$	0.60 2.61 0.34 1.3E+01 6.1E+01 0.996 3E-05	Water Level	0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90	5 C 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80	otal effecti	ve storage Elapse	e depth (esd) (m)	 Bes 75% 25% Tes: Bes 75% 	st Fit Line % ESD % ESD 30 35 t Data t Fit Line % ESD
15 25 30 40 45 60 90 90 est 3 Time min 0 2 4 6 8 10 15 20	0.22 0.30 0.37 0.43 0.48 0.59 0.80 Infiltration rate	25% esd (mbgl) $A_{s50} (m^2)$ $V_{p75-25} (m^3)$ $t_{75} (min)$ $t_{25} (min)$ Data Fit R ² ef (ms ⁻¹) 4.53 Test Parame 75% esd (mbgl) 50% esd (mbgl) 25% esd (mbgl) $A_{s50} (m^2)$ $V_{p75-25} (m^3)$ $t_{75} (min)$ $t_{25} (min)$ Data Fit R ²	0.60 2.61 0.34 1.3E+01 6.1E+01 0.996 3E-05	Water Level	0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90	T 5 C 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00	otal effecti	Elapse 10	e depth (esd) (m)	 Bes 75% 25% Tes Bes 25 Tes 8es 75% 25% 	st Fit Line % ESD % ESD % ESD % ESD 9 30 35 t Data t Fit Line % ESD % ESD % ESD

Project	RE DG 365:2016						7/-		CAD	J	Design & for natu built ass	ets
,	Abermul	e Business Pa	·k					Status			LOCA	ATION ID
Project ID	1002641	Δ		PRELIMIN								
	Details	-										
	Test 1	Test 2 Test	3	Ground	Level		92 02	mAOD	Date F	kcavated	1	10/01/201
Dept			,			31	5662.68			Tested	•	10/01/201
Widt				Coor	dinates		4152.51		Dute	resteu		10/01/201
Lengt						23	102.01					
Fest 1												
	Depth to Water	Test Para	meters					Flame	od Timo (m	in)		
min	m bgl				C) 5	0	100	ed Time (m 150	200	250	300
0	0.05	75% esd (mbg	l) 0.24		0.00							
15	0.08	50% esd (mbg	l) 0.43		0.10	· • • • • • • •						
30	0.10	25% esd (mbg	l) 0.61	60	0.20		••••	•••••	••••			
40	0.12	A _{s50} (m	²) 2.63	р Ш								
60	0.13	V _{p75-25} (m	³) 0.34	vel	0.30					•	Test Da	ita
75	0.14	t ₇₅ (mi	n) 2.8E+02	Water Level m bgl	0.40						Best Fit	
100	0.16	t ₂₅ (mi	n) 3.0E+03	'ate	0.50						75% ES	
120	0.17	Data Fit I	R ² 0.990	3	0.60						25% ES	D
					0.70							
	Infiltration rate	f (ms⁻¹) 7	.94E-07		0.70	Tota	l effectiv	e storage	e depth (esd)	(m)	0.75	
est 2												
Time [Depth to Water	Test Para	meters					Elaps	ed Time (m	in)		
min	m bgl				-1)	10	20	30	40	50
0		75% esd (mbg	i)		ĺ	0.00	••				Test D	ata
2		50% esd (mbg	1)			0.10 0.20					Best Fi	
5		25% esd (mbg	1)	bgl		0.30					75% E	
10		A _{s50} (m		E		0.40					25% E	SD
15		V _{p75-25} (m		Water Level m		0.50						
20		t ₇₅ (mi		er Ľ		0.60						
25		t ₂₅ (mi		Vate		0.70 0.80						
30		Data Fit I	R ²	~		0.80						
35						1.00						
40		1										
	Infiltration rate	f (ms ⁻ ") NO ∖	ALID DATA			Tota	l effectiv	e storage	e depth (esd)	(m)		
est 3												
Time I min	Depth to Water	Test Para	meters		_	-	-		ed Time (mi			0 25
min 0	m bgl	75% esd (mbg	I)		-5	0.00	5	10	15 2	0 2	5 3	0 35
2		50% esd (mbg			_	0.10				•	Test Da	ata
2 4		25% esd (mbg			_	0.20				•••••	Best Fi	t Line
4 6		25% esd (mbg A _{s50} (m		bgl	-	0.30					75% ES	
8				Water Level m bgl	-	0.40					25% ES	D
		V _{p75-25} (m		eve.	-	0.50						
10 15		t ₇₅ (mi		er L	-	0.60						
15 20		t ₂₅ (mi		Wat		0.70 0.80						
20		Data Fit I	κ	_		0.80						
25						1.00						
30	Infilment's	f (<i>,</i> , ,	0.00	
	Infiltration rate	f (ms ⁻¹) NO V	ALID DATA	ity fod +6-	Yough 2"	Tota pipe from IB		e storage	e depth (esd)	(m) ged	0.00	necked

	BRE DG 365:2016	kaway T	est			6	a /-	ARC	CAD	IS	Desig for na built a	n & Consultancy tural and assets
Project		le Business Park						Status			10	CATION ID
Project I									ELIMINARY	6.4.95		
-	it Details	.4						PK	ELIIVIIINART			JAUJ
i i i di P	Test 1	Test 2 Test 3		Ground			01.03	3 mAOD	Data E	xcavated	4	10/01/201
Dej		Test 2 Test 3		Ground	Levei	2	91.93 15651.13			Tested	L	10/01/201
Wi	•			Coord	dinates		94168.98		Date	resteu		10/01/201
	ngth 1.70					2	54100.50	5 1111				
Fest 1												
Time	Depth to Water	Test Parame	oters					-	1	• \		
min	m bgl				0		50	Elaps 100	ed Time (m 150	un) 200	25	300
0	0.10	75% esd (mbgl)	0.26		0.00							
20	0.15	50% esd (mbgl)	0.43		0.10	•						
30	0.17	25% esd (mbgl)	0.59	-00	0.20		•••••					
45	0.18	A _{s50} (m ²)	2.28	р Ш	-				•••••••••	<u></u>		•
60	0.19	V _{p75-25} (m ³)	0.28	vel	0.30					•	Test	
70	0.19	t ₇₅ (min)	2.5E+02	Water Level m bgl	0.40					_	• Best 75%	Fit Line
90	0.20	t ₂₅ (min)	6.8E+03	/ate	0.50						25%	
105	0.22	Data Fit R ²	0.969	3	0.60							-
130	0.22				0.70							
150	0.23	_			0.70							
	Infiltration rate	f (ms ⁻¹) 3.10	DE-07			Tot	al effecti	ive storage	e depth (esd) (m)	0.65	
est 2												
Time	Depth to Water	Test Parame	eters		10	0	0		ed Time (m			0 50
min	m bgl				-1(.00-0	0	10	20	30	4(0 50
0		75% esd (mbgl)			_	0.10					Test	Data
2 5		50% esd (mbgl)		_	-	0.20						Fit Line
5 10		25% esd (mbgl) Λ (m ²)		lgd r	-	0.30					- 75%	
10		A _{s50} (m ²) V _{p75-25} (m ³)		e		0.40					• 25%	ESD
20		t_{75} (min)		Lev		0.50 0.60						
25		t ₂₅ (min)		Water Level m	-	0.70						
30		Data Fit R ²		eM	-	0.80						
35		Dutu Ht K			-	0.90	_					
40						1.00						
	Infiltration rate	f (ms ⁻¹) NO VAL	ID DATA			Tot	al effecti	ive storage	e depth (esd) (m)		
est 3								0	1 1			
Time	Depth to Water	Test Parame	eters					Flanc	ad Time (m			
min	m bgl				-5	0	5	10 Elapse	ed Time (m 15 2		5	30 35
0		75% esd (mbgl)				0.00	•				_	
2		50% esd (mbgl)				0.10				•	Test	
4		25% esd (mbgl)		<u>p</u> 0		0.20					• Best 75%	Fit Line ESD
6		$A_{s50} (m^2)$		Water Level m bgl		0.30					25%	
8		V _{p75-25} (m ³)		ve		0.50						
10		t ₇₅ (min)		r Le	_	0.60						
15		t ₂₅ (min)		/ate		0.70						
20		Data Fit R ²		\$		0.80						
25						0.90						
30						1.00						
	Infiltration rate	1	ID DATA					ive storage	e depth (esd) (m)	0.00	
arried o		Notes.	Water gravi	ty fed thr	ough 2" p	ope from I	BC.		Log	gged		Checked
rcadis	Consulting (UK) I	Ltd								KA	4	

	I Pit Soa	kaway	Test				9	ARC	CAD	IS	Design & C for natural built assets	onsultancy and s
Project		le Business Pa	ŕk					Status			LOCAT	ION ID
Project II					PRELIMIN							
•	it Details	.4						FN			57	00
11101 F1	Test 1	Test 2 Test	2	Ground			91.9	81 mAOD	Date F	xcavated	11	0/01/2019
Dep		16312 1631	,	Ground	Levei		315712.1			Tested		0/01/2013 0/01/2019
Wic				Coor	dinates		294193.9		Date	resteu	1	5/01/2013
Len							23 1233.3	,				
Test 1	5 2.00											
Time	Depth to Water	Test Para	meters					Flanc	od Timo (m	in)		
min	m bgl					0	50	100	ed Time (m 150	200	250	300
0	0.00	75% esd (mbg	i) 0.18		0.00							
20	0.05	50% esd (mbg	i) 0.35		0.10	···•	•••••					
30	0.08	25% esd (mbg	i) 0.53	<u></u>		L			••••	•••••••		
45	0.09	A _{s50} (m	²) 2.27	q M	0.20							
60	0.10	V _{p75-25} (m	³) 0.28	Water Level m bgl	0.30						Test Data	
70	0.10	t ₇₅ (mi	n) 2.6E+02	r Le	0.40						Best Fit Li 75% ESD	ne
90	0.11	t ₂₅ (mi		/ate	0.40						25% ESD	
110	0.13	Data Fit	R ² 0.920	\$	0.50	L						
130	0.13				0.60							
	Infiltration rate	f (ms ⁻¹) 5	.30E-07		0.00	т	otal effec	tive storage	e depth (esd)	(m)	0.70	
Fest 2										()		
Time	Depth to Water	Test Para	meters					Elaps	ed Time (m	in)		
min	m bgl				-:	10	0	10	20	, 30	40	50
0		75% esd (mbg	;I)			0.00					Test Data	2
2		50% esd (mbg				0.10					Best Fit L	
5		25% esd (mbg		bgl		0.3)				75% ESD	
10		A _{s50} (m		2		0.40)				25% ESD	
15		V _{p75-25} (m		Water Level m		0.5						
20		t ₇₅ (mi		er L		0.6						
25		t ₂₅ (mi		Wat		0.8						
30		Data Fit	<u></u> ζ-	-		0.9						
35						1.00)					
40	Infiltration rate	f (mc ⁻¹) NO)				-	مغما ملامه			(
Fest 3	Innitiation rate						otarenec	live storage	e depth (esd)	(m)		
Time	Depth to Water	Test Para	meters							,		
min	m bgl	icstrald	meters		-!	5 (5	Elapse 10	ed Time (mi 15 2		5 30	35
0	-	75% esd (mbg	:1)			0.00	••••	-	. –			
2		50% esd (mbg				0.10				•	Test Data	
4		25% esd (mbg		0		0.20				•••••	Best Fit L	ine
6		A _{s50} (m		Water Level m bgl		0.30					75% ESD 25% ESD	
8		V _{p75-25} (m		/el r		0.40					2070 200	
10		t ₇₅ (mi		. Lev		0.60						
15		t ₂₅ (mi		ater		0.70						
20		Data Fit	R ²	\geq		0.80						
25						0.90						
30						1.00			1			
	Infiltration rate	f (ms ⁻¹) NO \	ALID DATA					tive storage	e depth (esd)	(m)	0.00	
arried o	but by	Notes	Water grav	ity fed th	rough 2"	pipe fron	IBC.		Log	ged	Che	cked
rcadis	Consulting (UK) I	Ltd								KA		

Project	RE DG 365:2016 Abermul	e Business Park						Status			Design & Consulta for natural and built assets
Project ID									ELIMINARY	,	SA07
-	t Details	<u> </u>						PRI		r	JAU7
		Tost 2 Tost 2		Ground	Loval		02.15	mAOD	Data	Treavated	09/01/2
Don	Test 1 th 0.95	Test 2 Test 3		Ground	Level	215	92.15 750.15			Excavated e Tested	09/01/2
Dep [.] Wid [.]				Coor	dinates		218.77		Date	resteu	09/01/2
						294	210.77	IIIN			
Leng Test 1	1.60										
	Depth to Water	Test Parame	tors								
min	m bgl	restruitme	ters		(C	20	Elaps	ed Time (m 40	nin) 60	0 8
0	0.07	75% esd (mbgl)	0.29		0.00						
5	0.20	50% esd (mbgl)	0.51		0.10						Test Data
10	0.27	25% esd (mbgl)	0.73	00	0.20						Best Fit Line
15	0.34	A _{s50} (m ²)	2.65	a u p	0.30		 ••				25% ESD 25% ESD
20	0.38	V _{p75-25} (m ³)	0.35	vel	0.40		•••	••.			2370 L3D
25	0.45	t ₇₅ (min)	1.2E+01	r Lev	0.50			· · ·	•••		
30	0.52	t ₂₅ (min)	5.5E+01	Water Level m bgl	0.60				····	•••	
40	0.59	Data Fit R ²	0.993	\geq	0.70						
45	0.63				0.80 0.90						•••
55	0.73				0.90						
	Infiltration rate	f (ms ⁻¹) 5.15	E-05			Total	effecti	ve storage	e depth (esd	l) (m)	0.88
est 2											
	Depth to Water	Test Parame	ters						ed Time (m		
min	m bgl				-1	0.00		10	20	30	40 5
0		75% esd (mbgl)				0.00					Test Data
2		50% esd (mbgl)				0.20					Best Fit Line
5		25% esd (mbgl) (m^2)		bgl		0.30					75% ESD
10		A _{s50} (m ²)		2							
15						0.40					25% ESD
20		V _{p75-25} (m ³)		Level r		0.50					
20 25		V _{p75-25} (m ³) t ₇₅ (min)		ter Level r		0.50 0.60					
25		V _{p75-25} (m ³) t ₇₅ (min) t ₂₅ (min)		Water Level m		0.50					
25 30		V _{p75-25} (m ³) t ₇₅ (min)		Water Level r		0.50 0.60 0.70					
25 30 35		V _{p75-25} (m ³) t ₇₅ (min) t ₂₅ (min)		Water Level r		0.50 0.60 0.70 0.80					
25 30	Infiltration rate	V _{p75-25} (m ³) t ₇₅ (min) t ₂₅ (min) Data Fit R ²	ΙΟ ΟΑΤΑ	Water Level r		0.50 0.60 0.70 0.80 0.90 1.00	effecti	ve storage	e depth (esd		
25 30 35 40	Infiltration rate	V _{p75-25} (m ³) t ₇₅ (min) t ₂₅ (min)	ID DATA	Water Level r		0.50 0.60 0.70 0.80 0.90 1.00	effecti	ve storage	e depth (esd		
25 30 35 40		V _{p75-25} (m ³) t ₇₅ (min) t ₂₅ (min) Data Fit R ² <u>f (ms⁻¹) NO VAL</u>		Water Level r		0.50 0.60 0.70 0.80 0.90 1.00	effecti			l) (m)	
25 30 35 40	Infiltration rate Depth to Water m bgl	V _{p75-25} (m ³) t ₇₅ (min) t ₂₅ (min) Data Fit R ²		Water Level r		0.50 0.60 0.70 0.80 0.90 1.00 Total	effecti		ed Time (m	l) (m)	25% ESD
25 30 35 40 Time	Depth to Water	V _{p75-25} (m ³) t ₇₅ (min) t ₂₅ (min) Data Fit R ² <u>f (ms⁻¹) NO VAL</u>		Water Level r	-5	0.50 0.60 0.70 0.80 0.90 1.00 Total		Elapse	ed Time (m	I) (m) in) 20 25	25% ESD
25 30 35 40 Time min	Depth to Water	V _{p75-25} (m ³) t ₇₅ (min) t ₂₅ (min) Data Fit R ² <u>f (ms⁻¹) NO VAL</u>		Water Level r	-5	0.50 0.60 0.70 0.80 0.90 1.00 Total		Elapse	ed Time (m	I) (m) in) 20 25	25% ESD
25 30 35 40 Time min 0	Depth to Water	V _{p75-25} (m ³) t ₇₅ (min) t ₂₅ (min) Data Fit R ² <u>f (ms⁻¹) NO VAL</u> Test Parame 75% esd (mbgl)			-5	0.50 0.60 0.70 0.80 0.90 1.00 Total 5 0 0.00 0.10 0.20		Elapse	ed Time (m	I) (m) in) 20 25	25% ESD 30 3 Test Data Best Fit Line
25 30 35 40 Time min 0 2	Depth to Water	V _{p75-25} (m ³) t ₇₅ (min) t ₂₅ (min) Data Fit R ² f (ms⁻¹) NO VAL Test Parame 75% esd (mbgl) 50% esd (mbgl)			- 5	0.50 0.60 0.70 0.80 0.90 1.00 Total		Elapse	ed Time (m	I) (m) in) 20 25	25% ESD
25 30 35 40 Time min 0 2 4	Depth to Water	V _{p75-25} (m ³) t ₇₅ (min) t ₂₅ (min) Data Fit R ² <u>f (ms⁻¹) NO VAL</u> Test Parame 75% esd (mbgl) 50% esd (mbgl) 25% esd (mbgl)			-5	0.50 0.60 0.70 0.80 0.90 1.00 Total 5 0 0.00 0.10 0.20		Elapse	ed Time (m	I) (m) in) 20 25	25% ESD 30 3 Test Data Best Fit Line 75% ESD
25 30 35 40 Time min 0 2 4 6	Depth to Water	V _{p75-25} (m ³) t ₇₅ (min) t ₂₅ (min) Data Fit R ² f (ms ⁻¹) NO VALL Test Parame 75% esd (mbgl) 50% esd (mbgl) 25% esd (mbgl) A _{s50} (m ²)			-5	0.50 0.60 0.70 0.80 0.90 1.00 Total 5 0 0.00 0.10 0.20 0.30 0.40		Elapse	ed Time (m	I) (m) in) 20 25	25% ESD 30 3 Test Data Best Fit Line 75% ESD
25 30 35 40 Time min 0 2 4 6 8	Depth to Water	$V_{p75-25} (m^3) \\ t_{75} (min) \\ t_{25} (min) \\ Data Fit R^2$ f (ms⁻¹) NO VAL Test Parame 75% esd (mbgl) 50% esd (mbgl) 25% esd (mbgl) $A_{s50} (m^2) \\ V_{p75-25} (m^3) \\ t_{75} (min) \\ t_{25} (min)$			 	0.50 0.60 0.70 0.80 0.90 1.00 Total 5 0 0.00 0.20 0.30 0.40 0.50 0.60 0.70		Elapse	ed Time (m	I) (m) in) 20 25	25% ESD 30 3 Test Data Best Fit Line 75% ESD
25 30 35 40 Time min 0 2 4 6 8 10	Depth to Water	$V_{p75-25} (m^{3}) \\ t_{75} (min) \\ t_{25} (min) \\ Data Fit R^{2} \\ \hline f (ms^{-1}) NO VALL \\ \hline Test Parame \\ 75\% esd (mbgl) \\ 50\% esd (mbgl) \\ 25\% esd (mbgl) \\ A_{s50} (m^{2}) \\ V_{p75-25} (m^{3}) \\ t_{75} (min) \\ \hline \end{cases}$		Water Level m bgl	-5	0.50 0.60 0.70 0.80 0.90 1.00 Total 5 0 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80		Elapse	ed Time (m	I) (m) in) 20 25	25% ESD 30 3 Test Data Best Fit Line 75% ESD
25 30 35 40 Time min 0 2 4 6 8 10 15	Depth to Water	$V_{p75-25} (m^3) \\ t_{75} (min) \\ t_{25} (min) \\ Data Fit R^2$ f (ms⁻¹) NO VAL Test Parame 75% esd (mbgl) 50% esd (mbgl) 25% esd (mbgl) $A_{s50} (m^2) \\ V_{p75-25} (m^3) \\ t_{75} (min) \\ t_{25} (min)$				0.50 0.60 0.70 0.80 0.90 1.00 Total 5 0 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90		Elapse	ed Time (m	I) (m) in) 20 25	25% ESD 30 3 Test Data Best Fit Line 75% ESD
25 30 35 40 Time min 0 2 4 6 8 10 15 20	Depth to Water m bgl	$V_{p75-25} (m^3) \\ t_{75} (min) \\ t_{25} (min) \\ Data Fit R^2$ f (ms⁻¹) NO VAL Test Parame 75% esd (mbgl) 50% esd (mbgl) 25% esd (mbgl) $A_{s50} (m^2) \\ V_{p75-25} (m^3) \\ t_{75} (min) \\ t_{25} (min)$	ters		-5	0.50 0.60 0.70 0.80 0.90 1.00 Total 5 0 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80		Elapse	ed Time (m	I) (m) in) 20 25	25% ESD 30 3 Test Data Best Fit Line 75% ESD

	I Pit Soa	kaway Te	est				9	ARC	AD	IS	Design & Co for natural a built assets	nsultancy nd
Project		le Business Park						Status			LOCATI	ON ID
Project II									ELIMINARY			
-	it Details											
	Test 1	Test 2 Test 3		Ground	Level		92.	.18 mAOD	Date Ex	cavated	10	/01/2019
Dep							315738.	76 mE		Tested		/01/2019
	Vidth 0.50		Coordinates			294235.63 mN				_0, 0_, _0_0		
Len	gth 1.60											
Test 1	-											
Time	Depth to Water	Test Paramet	ers					Flans	ed Time (mi	in)		
min	m bgl					0	50	100	150	200	250	300
0	0.00	75% esd (mbgl)	0.25		0.00	····						
5	0.01	50% esd (mbgl)	0.50		0.10		••••••	••••••	••••••	•••••••	• ••••	
10	0.02	25% esd (mbgl)	0.75	100	0.20							
20	0.03	A _{s50} (m ²)	2.90	р Е	0.30							
40	0.06	V _{p75-25} (m ³)	0.40	ive	0.40					— т	est Data	
60	0.08	t ₇₅ (min)	1.7E+03	Water Level m bgl	0.50						est Fit Lir	ne
80	0.09	t ₂₅ (min)	3.6E+04	/ate	0.60					7	'5% ESD	
120	0.10	Data Fit R ²	0.905	>	0.70					2	5% ESD	
180	0.11				0.80							
240	0.12	1.			0.00							
	Infiltration rate	f (ms ⁻¹) 6.63	E-08			Т	otal effe	ctive storage	e depth (esd)	(m) 1	.00	
Test 2												
Time	Depth to Water	Test Paramet	ters			10	0	Elapso 10	ed Time (mi 20	n) 30	40	50
min	m bgl	75% and (mbal)				0.00		10	20	50	40	50
0 2		75% esd (mbgl)				0.10					Test Data	
2 5		50% esd (mbgl) 25% esd (mbgl)		_		0.20)				Best Fit Li	ne
10		A_{s50} (m ²)		m bgl		0.3					75% ESD	
15		$V_{p75-25} (m^3)$				0.4					25% ESD	
20		t ₇₅ (min)		Water Level		0.50						
25		t ₂₅ (min)		iter		0.70						
30		Data Fit R ²		\sim		0.8)			_		
35		Dutu Ht K				0.9						
40						1.00)					
	Infiltration rate	f (ms ⁻¹) NO VALI	D DATA			т	otal effe	ctive storage	e depth (esd)	(m)		
Test 3									, ,			
Time	Depth to Water	Test Paramet	ers					Elance	d Time (mi	2		
min	m bgl				-!	5 (5		d Time (min 15 20		30	35
0		75% esd (mbgl)				0.00						
2		50% esd (mbgl)				0.10					est Data	
4		25% esd (mbgl)		Ď		0.20 0.30					3est Fit Lir 75% ESD	ie
6		A _{s50} (m ²)		Water Level m bgl		0.30					25% ESD	
8		V _{p75-25} (m ³)		la		0.50						
10		t ₇₅ (min)		rLe		0.60						
15		t ₂₅ (min)		/ate		0.70						
20		Data Fit R ²		3		0.80						
25						0.90 1.00						
30						1.00						
	Infiltration rate							ctive storage	e depth (esd)	(m) 0	.00	
Carried c		Notes.	Vater gravi	ty fed th	rough 2"	pipe fron	n IBC.		Log	ged	Chec	ked
Arcadis	Consulting (UK) I	Ltd								KA		

Project	Abormu	le Business Park				-					LOCATION ID
-											
Project ID		.4						PR	ELIMINARY		SA09
I rial Pi	t Details			-							/ /
_	Test 1	Test 2 Test 3		Ground	Level			34 mAOD	Date Exca		09/01/2019
Dep		1.10		Coor	dinates		315756.		Date Te	sted	09/01/2019
Wid		0.50					294236.	24 MN			
Leng Test 1	gth 1.80	1.80									
	Doubh to Water	Test Parame									
Time min	Depth to Water m bgl	Test Paralite	lers			0	20	Elapso 40 6	ed Time (min) 0 80	100	120 140
0	0.30	75% esd (mbgl)	0.50		0.00						
5	0.45	50% esd (mbgl)	0.70		0.10					• Те	est Data
10	0.55	25% esd (mbgl)	0.90		0.20				•		est Fit Line
15	0.61	$A_{s50} (m^2)$	2.74	n bg	0.30	•					% ESD
30	0.72	V _{p75-25} (m ³)	0.36	/el n	0.40 0.50	•				- 25	5% E\$D
50	0.80	t ₇₅ (min)	5.0E+00	Water Level m bgl	0.60						
60	0.83	t ₂₅ (min)	9.0E+01	ater	0.70		••••••				
80	0.87	Data Fit R ²	0.995	\geq	0.80				· · · · · · · · · · · · · · · · · · ·		
100	0.93				0.90						
120	0.95				1.00						
	Infiltration rate	f (ms ⁻¹) 2.57	′E-05			Т	otal effe	ctive storage	e depth (esd) (r	m) 0.8	80
est 2											
Time	Depth to Water	Test Parame	eters					Elapse	ed Time (min)		
min	m bgl					0	20	40 60	0 80	100	120 140
0	0.00				0.00					200	
	0.20	75% esd (mbgl)	0.43		0.00						est Data
2	0.23	50% esd (mbgl)	0.65		0.00 0.20				•	• Te	est Data est Fit Line
5	0.23 0.28	50% esd (mbgl) 25% esd (mbgl)	0.65 0.88	bgl					•	• Te	est Fit Line 5% ESD
5 10	0.23 0.28 0.33	50% esd (mbgl) 25% esd (mbgl) A _{s50} (m ²)	0.65 0.88 2.97	el m bgl	0.20 0.40					• Te	est Fit Line
5 10 15	0.23 0.28 0.33 0.39	50% esd (mbgl) 25% esd (mbgl) A _{s50} (m ²) V _{p75-25} (m ³)	0.65 0.88 2.97 0.41		0.20		••••			• Te	est Fit Line 5% ESD
5 10 15 20	0.23 0.28 0.33 0.39 0.45	50% esd (mbgl) 25% esd (mbgl) $A_{s50} (m^2)$ $V_{p75-25} (m^3)$ $t_{75} (min)$	0.65 0.88 2.97 0.41 1.6E+01		0.20 0.40			•	•••••	• Te	est Fit Line 5% ESD
5 10 15 20 25	0.23 0.28 0.33 0.39 0.45 0.50	50% esd (mbgl) 25% esd (mbgl) $A_{s50} (m^2)$ $V_{p75-25} (m^3)$ $t_{75} (min)$ $t_{25} (min)$	0.65 0.88 2.97 0.41 1.6E+01 9.4E+01	Water Level m bgl	0.20 0.40 0.60 0.80				·····	• Te	est Fit Line 5% ESD 5% ESD
5 10 15 20 25 30	0.23 0.28 0.33 0.39 0.45 0.50 0.55	50% esd (mbgl) 25% esd (mbgl) $A_{s50} (m^2)$ $V_{p75-25} (m^3)$ $t_{75} (min)$	0.65 0.88 2.97 0.41 1.6E+01		0.20 0.40 0.60				····	• Te	est Fit Line 5% ESD 5% ESD
5 10 15 20 25 30 35	0.23 0.28 0.33 0.39 0.45 0.50 0.55 0.60	50% esd (mbgl) 25% esd (mbgl) $A_{s50} (m^2)$ $V_{p75-25} (m^3)$ $t_{75} (min)$ $t_{25} (min)$	0.65 0.88 2.97 0.41 1.6E+01 9.4E+01		0.20 0.40 0.60 0.80				·····	• Te	est Fit Line 5% ESD 5% ESD
5 10 15 20 25 30	0.23 0.28 0.33 0.39 0.45 0.50 0.55 0.60 0.64	50% esd (mbgl) 25% esd (mbgl) A_{s50} (m ²) V_{p75-25} (m ³) t_{75} (min) t_{25} (min) Data Fit R ²	0.65 0.88 2.97 0.41 1.6E+01 9.4E+01 0.977		0.20 0.40 0.60 0.80 1.00						est Fit Line 5% ESD 5% ESD
5 10 15 20 25 30 35 40	0.23 0.28 0.33 0.39 0.45 0.50 0.55 0.60	50% esd (mbgl) 25% esd (mbgl) A_{s50} (m ²) V_{p75-25} (m ³) t_{75} (min) t_{25} (min) Data Fit R ²	0.65 0.88 2.97 0.41 1.6E+01 9.4E+01		0.20 0.40 0.60 0.80 1.00				e depth (esd) (r		est Fit Line 5% ESD 5% ESD
5 10 15 20 25 30 35	0.23 0.28 0.33 0.39 0.45 0.50 0.55 0.60 0.64 Infiltration rate	50% esd (mbgl) 25% esd (mbgl) A_{s50} (m ²) V_{p75-25} (m ³) t_{75} (min) t_{25} (min) Data Fit R ²	0.65 0.88 2.97 0.41 1.6E+01 9.4E+01 0.977 2E-05		0.20 0.40 0.60 0.80 1.00			ctive storage			est Fit Line 5% ESD 5% ESD
5 10 15 20 25 30 35 40	0.23 0.28 0.33 0.39 0.45 0.50 0.55 0.60 0.64	50% esd (mbgl) 25% esd (mbgl) A_{s50} (m ²) V_{p75-25} (m ³) t_{75} (min) t_{25} (min) Data Fit R ² of (ms ⁻¹) 2.92	0.65 0.88 2.97 0.41 1.6E+01 9.4E+01 0.977 2E-05		0.20 0.40 0.60 0.80 1.00 1.20		otal effe	ctive storage	e depth (esd) (r 20		est Fit Line 5% ESD 5% ESD
5 10 15 20 25 30 35 40 Time	0.23 0.28 0.33 0.39 0.45 0.50 0.55 0.60 0.64 Infiltration rate	50% esd (mbgl) 25% esd (mbgl) A_{s50} (m ²) V_{p75-25} (m ³) t_{75} (min) t_{25} (min) Data Fit R ² of (ms ⁻¹) 2.92	0.65 0.88 2.97 0.41 1.6E+01 9.4E+01 0.977 2E-05		0.20 0.40 0.60 0.80 1.00 1.20	5 (0.00	otal effe	ctive storage	ed Time (min)	m) 0.9	est Fit Line 5% ESD 5% ESD 90 30 35
5 10 15 20 25 30 35 40 Time min	0.23 0.28 0.33 0.39 0.45 0.50 0.55 0.60 0.64 Infiltration rate	50% esd (mbgl) 25% esd (mbgl) A _{s50} (m ²) V _{p75-25} (m ³) t ₇₅ (min) t ₂₅ (min) Data Fit R ² f (ms⁻¹) 2.92 Test Parame	0.65 0.88 2.97 0.41 1.6E+01 9.4E+01 0.977 2E-05		0.20 0.40 0.60 0.80 1.00 1.20	5 (0.00 0.10	otal effe	ctive storage	ed Time (min)	m) 0.5	est Fit Line 5% ESD 5% ESD 90 30 35 est Data
5 10 15 20 25 30 35 40 Time min 0	0.23 0.28 0.33 0.39 0.45 0.50 0.55 0.60 0.64 Infiltration rate	50% esd (mbgl) 25% esd (mbgl) A_{s50} (m ²) V_{p75-25} (m ³) t_{75} (min) t_{25} (min) Data Fit R ² f (ms ⁻¹) 2.92 Test Parame 75% esd (mbgl)	0.65 0.88 2.97 0.41 1.6E+01 9.4E+01 0.977 2E-05	Water Level	0.20 0.40 0.60 0.80 1.00 1.20	5 (0.00 0.10 0.20	otal effe	ctive storage	ed Time (min)	m) 0.5	est Fit Line 5% ESD 5% ESD 90 30 35 est Data est Fit Line
5 10 15 20 25 30 35 40 Time min 0 2	0.23 0.28 0.33 0.39 0.45 0.50 0.55 0.60 0.64 Infiltration rate	50% esd (mbgl) 25% esd (mbgl) $A_{s50} (m^2)$ $V_{p75-25} (m^3)$ $t_{75} (min)$ $Data Fit R^2$ f (ms⁻¹) 2.92 Test Parame 75% esd (mbgl) 50% esd (mbgl)	0.65 0.88 2.97 0.41 1.6E+01 9.4E+01 0.977 2E-05	Water Level	0.20 0.40 0.60 0.80 1.00 1.20	5 (0.00 0.10 0.20 0.30	otal effe	ctive storage	ed Time (min)	m) 0.9	est Fit Line 5% ESD 5% ESD 90 30 35 est Data est Fit Line 5% ESD
5 10 15 20 25 30 35 40 Time min 0 2 4	0.23 0.28 0.33 0.39 0.45 0.50 0.55 0.60 0.64 Infiltration rate	50% esd (mbgl) 25% esd (mbgl) A_{s50} (m ²) V_{p75-25} (m ³) t_{75} (min) t_{25} (min) Data Fit R ² f (ms ⁻¹) 2.92 Test Parame 75% esd (mbgl) 50% esd (mbgl) 25% esd (mbgl)	0.65 0.88 2.97 0.41 1.6E+01 9.4E+01 0.977 2E-05	Water Level	0.20 0.40 0.60 0.80 1.00 1.20	5 (0.00 0.10 0.20	otal effe	ctive storage	ed Time (min)	m) 0.9	est Fit Line 5% ESD 5% ESD 90 30 35 est Data est Fit Line
5 10 15 20 25 30 35 40 Time min 0 2 4 6	0.23 0.28 0.33 0.39 0.45 0.50 0.55 0.60 0.64 Infiltration rate	50% esd (mbgl) 25% esd (mbgl) A_{s50} (m ²) V_{p75-25} (m ³) t_{75} (min) t_{25} (min) Data Fit R ² 1 f (ms⁻¹) 2.92 Test Parame 75% esd (mbgl) 50% esd (mbgl) 25% esd (mbgl) A_{s50} (m ²)	0.65 0.88 2.97 0.41 1.6E+01 9.4E+01 0.977 2E-05	Water Level	0.20 0.40 0.60 0.80 1.00 1.20	5 (0.00 0.10 0.20 0.30 0.40	otal effe	ctive storage	ed Time (min)	m) 0.9	est Fit Line 5% ESD 5% ESD 90 30 35 est Data est Fit Line 5% ESD
5 10 15 20 25 30 35 40 Time min 0 2 4 6 8	0.23 0.28 0.33 0.39 0.45 0.50 0.55 0.60 0.64 Infiltration rate	$50\% esd (mbgl) 25\% esd (mbgl) A_{s50} (m^2) V_{p75-25} (m^3) t_{75} (min) Data Fit R2 of (ms-1) 2.92 Test Parame 75% esd (mbgl) 50% esd (mbgl) 25% esd (mbgl) A_{s50} (m^2) V_{p75-25} (m^3) t_{75} (min) t_{25} (min) t_{25} (min) $	0.65 0.88 2.97 0.41 1.6E+01 9.4E+01 0.977 2E-05	Water Level	0.20 0.40 0.60 0.80 1.00 1.20	5 (0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70	otal effe	ctive storage	ed Time (min)	m) 0.9	est Fit Line 5% ESD 5% ESD 90 30 35 est Data est Fit Line 5% ESD
5 10 15 20 25 30 35 40 Time min 0 2 4 6 8 10	0.23 0.28 0.33 0.39 0.45 0.50 0.55 0.60 0.64 Infiltration rate	50% esd (mbgl) 25% esd (mbgl) $A_{s50} (m^2)$ $V_{p75-25} (m^3)$ $t_{75} (min)$ $t_{25} (min)$ Data Fit R ² ef (ms⁻¹) 2.92 Test Parame 75% esd (mbgl) 50% esd (mbgl) 25% esd (mbgl) $A_{s50} (m^2)$ $V_{p75-25} (m^3)$ $t_{75} (min)$	0.65 0.88 2.97 0.41 1.6E+01 9.4E+01 0.977 2E-05		0.20 0.40 0.60 0.80 1.00 1.20	5 (0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80	otal effe	ctive storage	ed Time (min)	m) 0.9	est Fit Line 5% ESD 5% ESD 90 30 35 est Data est Fit Line 5% ESD
5 10 15 20 25 30 35 40 Time min 0 2 4 6 8 10 15	0.23 0.28 0.33 0.39 0.45 0.50 0.55 0.60 0.64 Infiltration rate	$50\% esd (mbgl) 25\% esd (mbgl) A_{s50} (m^2) V_{p75-25} (m^3) t_{75} (min) Data Fit R2 of (ms-1) 2.92 Test Parame 75% esd (mbgl) 50% esd (mbgl) 25% esd (mbgl) A_{s50} (m^2) V_{p75-25} (m^3) t_{75} (min) t_{25} (min) t_{25} (min) $	0.65 0.88 2.97 0.41 1.6E+01 9.4E+01 0.977 2E-05	Water Level	0.20 0.40 0.60 0.80 1.00 1.20	5 (0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90	otal effe	ctive storage	ed Time (min)	m) 0.9	est Fit Line 5% ESD 5% ESD 90 30 35 est Data est Fit Line 5% ESD
5 10 15 20 25 30 35 40 est 3 Time min 0 2 4 6 8 10 15 20	0.23 0.28 0.33 0.39 0.45 0.50 0.55 0.60 0.64 Infiltration rate	50% esd (mbgl) 25% esd (mbgl) $A_{s50} (m^2)$ $V_{p75-25} (m^3)$ $t_{75} (min)$ $t_{25} (min)$ Data Fit R ² f (ms⁻¹) 2.92 Test Parame 75% esd (mbgl) 50% esd (mbgl) 25% esd (mbgl) $A_{s50} (m^2)$ $V_{p75-25} (m^3)$ $t_{75} (min)$ $t_{25} (min)$ Data Fit R ²	0.65 0.88 2.97 0.41 1.6E+01 9.4E+01 0.977 2E-05	Water Level	0.20 0.40 0.60 0.80 1.00 1.20	5 (0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80	otal effe	ctive storage	ed Time (min)	m) 0.9	est Fit Line 5% ESD 5% ESD 90 30 35 est Data est Fit Line 5% ESD

	Pit Soal	ταννάγ τ	CSL				9/-	AK	ΆD	15	Design & Consultancy for natural and built assets
roject		e Business Park						Status			LOCATION ID
Project II	D 1002641	4						PR	ELIMINARY	,	SA10
	it Details										
	Test 1	Test 2 Test 3		Ground	Level		92.4	1 mAOD	Date E	xcavated	09/01/20
Dep							315776.0	1 mE		Tested	09/01/20
Wic				Coor	dinates		294238.6	1 mN			
Len	gth 1.50										
est 1	-										
Time	Depth to Water	Test Param	eters					Flans	ed Time (m	uin)	
min	m bgl					0	50	100	150	200	250 300
0	0.15	75% esd (mbgl)	0.41		0.00						
5	0.22	50% esd (mbgl)	0.68		0.10	¢.					Test Data
10	0.27	25% esd (mbgl)	0.94	100	0.20 0.30	÷					Best Fit Line 75% ESD
15	0.30	A _{s50} (m ²)	2.85	p M	0.40	•••					25% ESD
30	0.35	V _{p75-25} (m ³)	0.39	lave	0.50		•••••				
45	0.41	t ₇₅ (min)	4.7E+01	r Le	0.60				••••••••		
60	0.45	t ₂₅ (min)		Water Level m bgl	0.70					••••	••••
75	0.48	Data Fit R ²	0.991	\$	0.80						
120	0.59				0.90 1.00						
180	0.67				1.00						
	Infiltration rate	f (ms ⁻¹) 5.7	5E-06			T	otal effect	ive storage	e depth (esd) (m) 1	1.05
est 2											
Time	Depth to Water	Test Param	eters			-5	0	Elaps 5	ed Time (m 10	in) 15	20 25
min	m bgl				-	-5 0.00		5	10	15	20 25
0		75% esd (mbgl)				0.10				•	Test Data
1 2		50% esd (mbgl) 25% esd (mbgl)		_		0.20					Best Fit Line
4		$A_{s50} (m^2)$		lgd r		0.30					75% ESD
4 5		V _{p75-25} (m ³)		el u		0.40					25% ESD
7		t ₇₅ (min)		Water Level m		0.50					
, 9		t ₂₅ (min)		Iter		0.70					
10		Data Fit R ²		eM		0.80					
15		Data Ht K				0.90					
20						1.00					
20	Infiltration rate	f (ms ⁻¹) NO VA				Т	otal effect	ive storage	e depth (esd)) (m)	
est 3		. ,								/ (···/	
Time	Depth to Water	Test Param	eters					F lama		(m)	
min	m bgl					5 0	5	Elapse 10	ed Time (mi 15 2	in) :0 25	30 35
0		75% esd (mbgl)				0.00					
2		50% esd (mbgl)				0.10					Test Data
4		25% esd (mbgl)		0.0		0.20					Best Fit Line 75% ESD
6		A _{s50} (m ²)		Water Level m bgl		0.30					25% ESD
8		V _{p75-25} (m ³)		vel I		0.40					
10		t ₇₅ (min)		r Lei		0.60					
15		t ₂₅ (min)		ater		0.70					
20		Data Fit R ²		\geq		0.80					
25						0.90					
30						1.00				ı I.	
	Infiltration rate	f (ms ⁻¹) NO VA	LID DATA			Т	otal effect	ive storage	e depth (esd)) (m) (0.00
arried o	out by	Notes:	Water grav	ity fed th	rough 2"	pipe from	IBC.		Lo	gged	Checked
	Consulting (UK) L								1		

	RE DG 365:2016						,	- /-	ARC	CAD	ID	Design & for natura built asse	at and ts
Project	Abermul	e Busine	ss Park						Status			LOCA	TION ID
Project ID	1002641	4							PR	ELIMINARY		SA	11
•	Details								1			-	
	Test 1	Test 2	Test 3		Ground	Level		92.18	3 mAOD	Date E	xcavated	(09/01/201
Dept								315763.84	1 mE	Date	Tested		09/01/201
Widt					Coor	dinates		294251.89	∋mN				
Lengt	th 1.60												
Test 1													
Time I	Depth to Water	Tes	t Parame	ters					Flans	ed Time (m	in)		
min	m bgl						0	50	100	150	200	250	300
0	0.08	75% eso	d (mbgl)	0.31		0.00							
5	0.11	50% eso	d (mbgl)	0.54		0.10					•	Test Dat	
10	0.14		d (mbgl)	0.77	1g	0.20		•				Best Fit 75% ESD	
15	0.16		$A_{s50} (m^2)$	2.73	Water Level m bgl	0.30			•••••			25% ESD	
30	0.21	V _{p7}	₅₋₂₅ (m ³)	0.37	evel	0.40					••••	•••••••	
45	0.24		: ₇₅ (min)	8.4E+01	er Le	0.50 0.60							
60	0.27		t ₂₅ (min)	1.0E+03	Vate	0.00							
100	0.36	Da	ta Fit R ²	0.990	>	0.80							
140	0.39					0.90							
240	0.42	1 .											
	Infiltration rate	f (ms⁺)	2.34	E-06			To	otal effecti	ive storage	e depth (esd)	(m)	0.92	
Fest 2													
Time I min	Depth to Water m bgl	Tes	t Parame	ters			-5	0	Elaps 5	ed Time (m 10	in) 15	20	25
0	in bgi	75% eso	d (mbal)				0.00		5	10	15	20	25
1			d (mbgl)				0.10				•	Test Da	ta
2			d (mbgl)				0.20					Best Fit	
4			$A_{s50} (m^2)$		n bgl		0.30					75% ESI 25% ESI	
5			₅₋₂₅ (m ³)		/el r		0.40					2370 L31	
7			: ₇₅ (min)		. Lev		0.60						
9			t ₂₅ (min)		Water Level m		0.70						
10			ta Fit R ²		\geq		0.80						
15							0.90						
20							1.00			I			
	Infiltration rate	f (ms⁻¹)	NO VAL	ID DATA			Тс	tal effecti	ive storage	e depth (esd)	(m)		
Fest 3													
Time I	Depth to Water	Tes	t Parame	ters					Flanse	ed Time (mi	n)		
min	m bgl					-		5	10	15 2		5 30	35
0			d (mbgl)				0.00					Toct Det	2
2			d (mbgl)				0.10 0.20					Test Dat Best Fit	
4			d (mbgl)		lgc		0.20					75% ESE	
6			$A_{s50} (m^2)$		Б		0.40					25% ESE	
8			₅₋₂₅ (m ³)		Water Level m bgl		0.50						
10			: ₇₅ (min)		er Le		0.60						
15			t ₂₅ (min)		Vate		0.70						
20		Da	ta Fit R ²		>		0.80						
25							1.00						
25							2.00						
25 30		, , .1.											
	Infiltration rate		NO VAL Notes:	ID DATA Water gravi	+1, fod ±1-	rough 2"			ive storage	e depth (esd)	(m) ged	0.00	ecked

	I Pit Soa BRE DG 365:2016	kaway T	est				91	ARC	ADIS	Design & Consultancy for natural and built assets
Project		le Business Park						Status		LOCATION ID
-										SA12
Project II		.4						PRI	LIMINARY	JAIZ
I riai P	it Details									
_	Test 1	Test 2 Test 3		Ground	Level			06 mAOD	Date Excava	
Dep				Coor	dinates		315821.99		Date Teste	d 07/01/2019
Wio							294270.88	34 mN		
Len	gth 2.00									
Test 1										
Time	Depth to Water	Test Parame	ters			_			ed Time (min)	
min	m bgl				0.00	0	50	100	150	200 250
0	0.13	75% esd (mbgl)	0.30							Test Data
1	0.14	50% esd (mbgl)	0.47		0.10					••• Best Fit Line
5	0.20	25% esd (mbgl)	0.63	bgl	0.20	.				- 75% ESD
10	0.26	$A_{s50} (m^2)$	2.68	E	0.30					– 25% ESD
15	0.30	V _{p75-25} (m ³)	0.34	evel		1	•.			
30	0.40	t ₇₅ (min)	1.3E+01	Water Level m bgl	0.40		••••			
45	0.42	t ₂₅ (min)	1.9E+02	/ate	0.50			· · · · · · · · · · · · · · · · · · ·		
55	0.43	Data Fit R ²	0.985	>	0.60				*****	
					0.70					
					0.70					
	Infiltration rate	f (ms ⁻¹) 1.16	E-05				Total effec	tive storage	depth (esd) (m)	0.67
Test 2										
Time	Depth to Water	Test Parame	ters					Elapse	ed Time (min)	
min	m bgl				-:	10	0	10	20 30	40 50
0		75% esd (mbgl)				0.0				Test Data
1		50% esd (mbgl)				0.2				Best Fit Line
2		25% esd (mbgl)		180		0.3				- 75% ESD
5		A _{s50} (m ²)		m bgl		0.4	10			– 25% ESD
10		V _{p75-25} (m ³)		evel		0.5	50			
15		t ₇₅ (min)		Water Level		0.6	50			
30		t ₂₅ (min)		/ate		0.7				
45		Data Fit R ²		3		0.8				
						0.9				
						1.(10			
	Infiltration rate	f (ms ⁻¹) NO VAL	ID DATA				Total effec	tive storage	depth (esd) (m)	
Fest 3										
Time	Depth to Water	Test Parame	ters					Flanco	d Time (min)	
min	m bgl				-2	20	0 20		60 80	100 120 140
2		75% esd (mbgl)				0.00	-			
3		50% esd (mbgl)				0.10				Test Data
4		25% esd (mbgl)				0.20				••• Best Fit Line
8		$A_{s50} (m^2)$		Water Level m bgl		0.30				- 75% ESD
16		V _{p75-25} (m ³)		el n		0.40				– 25% ESD
30		t ₇₅ (min)		Lev		0.50 0.60				
60		t ₂₅ (min)		ter		0.80				
90		Data Fit R ²		Ma		0.70				
		υαια είι κ				0.90				
120						1.00				
	Infilturation	f (mo ⁻¹)					Tabal (0.00
	Infiltration rate		ID DATA Gravity fed	through ')" nino f		i otal effec	uve storage	depth (esd) (m)	0.00
arried c		Notes.	Gravity led	anougna	r hiha⊥	UIII IBC.			Logged	Checked
rcadis	Consulting (UK)	Ltd								KA

roject	BRE DG 365:2016	le Business Park						Status		LOCATIO	
,										SA1	
roject ID		14						PR	ELIMINARY	JAL	5
IIdi Pil	t Details Test 1	Test 2 Test 3		Ground			92.01	~ A O D	Date Excava	+ad 07/(1/201
Doni		Test 2 Test 3 0.80		Ground	Level	24	92.01	-	Date Excava Date Teste)1/2019)1/2019
Dept Widt		0.80		Coor	dinates		1292.49 I		Date reste	eu 07/0)1/201
Leng		0.30 3.70				294	+292.49				
Test 1	stil 5.70	5.70									
	Depth to Water	Test Parame	tors					-1			
min	m bgl	restratante			0	10	20		ed Time (min) 0 40	50 60	70
0	0.55	75% esd (mbgl)	0.61		0.00						
1	0.58	50% esd (mbgl)	0.68		0.10					Test Data	
2	0.58	25% esd (mbgl)	0.74	<u>–</u> 0	0.20				••••	••• Best Fit Line	
5	0.60	$A_{s50} (m^2)$	2.90	n bg	0.30					- 75% E\$D	
10	0.63	V _{p75-25} (m ³)	0.23	le L	0.40					- 25% E\$D	
15	0.65	t ₇₅ (min)	7.7E+00	Water Level m bgl	0.40						
20	0.68	t ₂₅ (min)	4.9E+01	ater	• •						
45	0.72	Data Fit R ²	0.918	\geq	0.60	· · · · · · · · · · · · · · · · · · ·					
60	0.76				0.70				11111-1- A rc		
					0.80						
	Infiltration rate	ef (ms ⁻¹) 3.19)E-05			Total	effective	e storage	e depth (esd) (m)	0.25	
est 2											
Time	Depth to Water	Test Parame	eters						ed Time (min)		
min	m bgl				0	50)	100	150 200	250	300
0	0.35	75% esd (mbgl)	0.46							Test Data	
1	0.36	50% esd (mbgl)	0.58		0.10				•••	•••• Best Fit Lin	e
2	0.36	25% esd (mbgl)	0.69	bgl	0.20					– – 75% ESD	
5	0.36	A _{s50} (m ²)	3.74	Ę							
					0.30					25% ESD	
10	0.37	V _{p75-25} (m ³)	0.42	evel r	0.40						
15	0.39	t ₇₅ (min)	3.7E+01	er Level r		·	•••••	· • • • • • •			
15 30	0.39 0.44	t ₇₅ (min) t ₂₅ (min)	3.7E+01 1.2E+03	Water Level r	0.40		••••••	· · · · · ·			
15 30 45	0.39 0.44 0.48	t ₇₅ (min)	3.7E+01	_	0.40	••••	•	• • • • • •			
15 30 45 60	0.39 0.44 0.48 0.50	t ₇₅ (min) t ₂₅ (min)	3.7E+01 1.2E+03	Water Level r	0.40 0.50 0.60	· · · · · ·	•••••••	· · · · · · · · ·			
15 30 45	0.39 0.44 0.48 0.50 0.54	t ₇₅ (min) t ₂₅ (min) Data Fit R ²	3.7E+01 1.2E+03 0.881	Water Level r	0.40 0.50 0.60 0.70		••••••	· · · · · · · · · · · · · · · · · · ·		25% ESD	
15 30 45 60 90	0.39 0.44 0.48 0.50	t ₇₅ (min) t ₂₅ (min) Data Fit R ²	3.7E+01 1.2E+03	Water Level r	0.40 0.50 0.60 0.70	Total	effective	e storage	e depth (esd) (m)	25% ESD	
15 30 45 60 90	0.39 0.44 0.48 0.50 0.54 Infiltration rate	t ₇₅ (min) t ₂₅ (min) Data Fit R ² e f (ms ⁻¹) 1.66	3.7E+01 1.2E+03 0.881 5E-06	Water Level r	0.40 0.50 0.60 0.70	Total	effective			25% ESD	
15 30 45 60 90 Test 3	0.39 0.44 0.48 0.50 0.54 Infiltration rate	t ₇₅ (min) t ₂₅ (min) Data Fit R ²	3.7E+01 1.2E+03 0.881 5E-06	Water Level r	0.40 0.50 0.60 0.70 0.80			Elapse	ed Time (min)	0.45	140
15 30 45 60 90 est 3 Time min	0.39 0.44 0.48 0.50 0.54 Infiltration rate	t ₇₅ (min) t ₂₅ (min) Data Fit R ² ef (ms ⁻¹) 1.66	3.7E+01 1.2E+03 0.881 5E-06	Water Level r	0.40 0.50 0.60 0.70 0.80 -20	Total	effective 20			25% ESD	140
15 30 45 60 90 Time min 2	0.39 0.44 0.48 0.50 0.54 Infiltration rate	t ₇₅ (min) t ₂₅ (min) Data Fit R ² e f (ms⁻¹) 1.66 Test Parame 75% esd (mbgl)	3.7E+01 1.2E+03 0.881 5E-06	Water Level r	0.40 0.50 0.60 0.70 0.80 -20 -20	0		Elapse	ed Time (min)	0.45	140
15 30 45 60 90 Time min 2 3	0.39 0.44 0.48 0.50 0.54 Infiltration rate	t ₇₅ (min) t ₂₅ (min) Data Fit R ² f (ms ⁻¹) 1.66 Test Parame 75% esd (mbgl) 50% esd (mbgl)	3.7E+01 1.2E+03 0.881 5E-06	Water Level r	0.40 0.50 0.60 0.70 0.80 -20 0. 0.	0		Elapse	ed Time (min)	0.45 100 120 Test Data Best Fit Line	
15 30 45 60 90	0.39 0.44 0.48 0.50 0.54 Infiltration rate	t ₇₅ (min) t ₂₅ (min) Data Fit R ² e f (ms⁻¹) 1.66 Test Parame 75% esd (mbgl) 50% esd (mbgl) 25% esd (mbgl)	3.7E+01 1.2E+03 0.881 5E-06	Water Level r	0.40 0.50 0.60 0.70 0.80 -20 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	0 00 10 20 30		Elapse	ed Time (min)	0.45 100 120 Test Data Best Fit Line - 75% ESD	
15 30 45 60 90 est 3 Time min 2 3 4 8	0.39 0.44 0.48 0.50 0.54 Infiltration rate	t ₇₅ (min) t ₂₅ (min) Data Fit R ² ef (ms ⁻¹) 1.66 Test Parame 75% esd (mbgl) 50% esd (mbgl) 25% esd (mbgl) A _{s50} (m ²)	3.7E+01 1.2E+03 0.881 5E-06	Water Level r	0.40 0.50 0.60 0.70 0.80 -20 -20 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	0 00 10 20 30 40		Elapse	ed Time (min)	0.45 100 120 Test Data Best Fit Line	
15 30 45 60 90 eest 3 Time min 2 3 4 8 16	0.39 0.44 0.48 0.50 0.54 Infiltration rate	t_{75} (min) t_{25} (min) Data Fit R ² ef (ms ⁻¹) 1.66 Test Parame 75% esd (mbgl) 50% esd (mbgl) 25% esd (mbgl) 25% esd (mbgl) A_{s50} (m ²) V_{p75-25} (m ³)	3.7E+01 1.2E+03 0.881 5E-06	Water Level r	0.40 0.50 0.60 0.70 0.80 -20 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	0 00 10 20 30 40 50		Elapse	ed Time (min)	0.45 100 120 Test Data Best Fit Line - 75% ESD	
15 30 45 60 90 Time min 2 3 4 8 16 30	0.39 0.44 0.48 0.50 0.54 Infiltration rate	t_{75} (min) t_{25} (min) Data Fit R ² ef (ms ⁻¹) 1.66 Test Parame 75% esd (mbgl) 50% esd (mbgl) 25% esd (mbgl) 25% esd (mbgl) A ₅₅₀ (m ²) V _{p75-25} (m ³) t ₇₅ (min)	3.7E+01 1.2E+03 0.881 5E-06	Water Level r	0.40 0.50 0.60 0.70 0.80 -20 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	0 00 10 20 30 40 50 60		Elapse	ed Time (min)	0.45 100 120 Test Data Best Fit Line - 75% ESD	
15 30 45 60 90 Time min 2 3 4 8 16 30 60	0.39 0.44 0.48 0.50 0.54 Infiltration rate	t_{75} (min) t_{25} (min) Data Fit R ² e f (ms⁻¹) 1.66 Test Parame 75% esd (mbgl) 50% esd (mbgl) 25% esd (mbgl) A_{s50} (m ²) V_{p75-25} (m ³) t_{75} (min) t_{25} (min)	3.7E+01 1.2E+03 0.881 5E-06	Water Level m bgl	0.40 0.50 0.60 0.70 0.80 -20 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	0 00 10 20 30 40 50		Elapse	ed Time (min)	0.45 100 120 Test Data Best Fit Line - 75% ESD	
15 30 45 60 90 est 3 Time min 2 3 4 8 16 30 60 90	0.39 0.44 0.48 0.50 0.54 Infiltration rate	t_{75} (min) t_{25} (min) Data Fit R ² ef (ms ⁻¹) 1.66 Test Parame 75% esd (mbgl) 50% esd (mbgl) 25% esd (mbgl) 25% esd (mbgl) A ₅₅₀ (m ²) V _{p75-25} (m ³) t ₇₅ (min)	3.7E+01 1.2E+03 0.881 5E-06	Water Level r	0.40 0.50 0.60 0.70 0.80 -20 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	0 00 20 30 40 50 60 70		Elapse	ed Time (min)	0.45 100 120 Test Data Best Fit Line - 75% ESD	
15 30 45 60 90 est 3 Time min 2 3 4 8 16 30 60	0.39 0.44 0.48 0.50 0.54 Infiltration rate	t_{75} (min) t_{25} (min) Data Fit R ² e f (ms⁻¹) 1.66 Test Parame 75% esd (mbgl) 50% esd (mbgl) 25% esd (mbgl) A_{s50} (m ²) V_{p75-25} (m ³) t_{75} (min) t_{25} (min)	3.7E+01 1.2E+03 0.881 5E-06	Water Level r	0.40 0.50 0.60 0.70 0.80 -20 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	0 00 20 30 40 50 60 70 80		Elapse	ed Time (min)	0.45 100 120 Test Data Best Fit Line - 75% ESD	
15 30 45 60 90 est 3 Time min 2 3 4 8 16 30 60 90	0.39 0.44 0.48 0.50 0.54 Infiltration rate	t_{75} (min) t_{25} (min) Data Fit R ² ef (ms⁻¹) 1.66 Test Parame 75% esd (mbgl) 50% esd (mbgl) 25% esd (mbgl) 25% esd (mbgl) A_{s50} (m ²) V_{p75-25} (m ³) t_{75} (min) t_{25} (min) Data Fit R ²	3.7E+01 1.2E+03 0.881 5E-06	Water Level r	0.40 0.50 0.60 0.70 0.80 -20 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	0 00 20 30 40 50 60 70 80 90 00	20	Elapse 40	ed Time (min)	0.45 100 120 Test Data Best Fit Line - 75% ESD	

	l Pit Soal	kaw	ay Te	est				A /-	ARC		5 for buil	ign & Consultancy natural and It assets
Project	Abermul	e Rusine	ess Park						Status			OCATION ID
			235 F di K									SA14
Project II		4							PRE	ELIMINARY		SA14
Trial Pi	it Details											
	Test 1	Test 2	Test 3		Ground	l Level			0 mAOD	Date Excav		08/01/2019
Dep	oth 1.00				Coor	dinates		315835.74	4 mE	Date Test	ted	08/01/2019
Wic	dth 0.50						2	94267.672	2 mN			
Len	gth 1.80											
Test 1												
Time	Depth to Water	Tes	st Parame	ters					Elapse	ed Time (min)		
min	m bgl						0	50	100	150 20	0 2	250 300
0	0.10		d (mbgl)	0.33		0.00					_	
1	0.11	50% es	d (mbgl)	0.55		0.10	6. •					t Data
5	0.15	25% es	d (mbgl)	0.78	<u></u>	0.20		••••••••				t Fit Line 6 ESD
10	0.16	1	A _{s50} (m²)	2.97	р Ш	0.30				······································	25%	· •
15	0.17	V _{p7}	₇₅₋₂₅ (m ³)	0.41	ve	0.40					207	
20	0.18	1	t ₇₅ (min)	1.5E+02	, Le	0.50						
35	0.21		t ₂₅ (min)	3.0E+03	Water Level m bgl	0.60						
60	0.24	Da	ata Fit R ²	0.957	Š	0.70		_				
180	0.35					0.80						· -
						0.90						
	Infiltration rate	f (ms ⁻¹)	8.08	-07			Тс	tal effect	ive storage	e depth (esd) (m) 0.90)
Test 2				-							,	-
Time	Depth to Water	Tee	st Parame	tors					Flama			
min	m bgl	103	stratanic			-	10	0	10	ed Time (min) 20 30)	40 50
0	0	75% es	d (mbgl)				0.00					
1			d (mbgl)				0.10					st Data
2			d (mbgl)				0.20					st Fit Line
5			$A_{s50} (m^2)$		m bgl		0.30					% ESD
10			₇₅₋₂₅ (m ³)				0.40				259	%-ESD
15			t ₇₅ (min)		Lev		0.50					
					Water Level		0.00					
30			$t_{25}(min)$		Ma		0.80					
45		Da	ata Fit R ²				0.90					
							1.00					
		1.										
	Infiltration rate	t (ms ⁻)	NO VAL	ID DATA			Тс	tal effect	ive storage	e depth (esd) (m)	
Test 3												
Time	Depth to Water	Tes	st Parame	ters						ed Time (min)		
min	m bgl	750/				-2	20 0	20	40	60 80	100	120 140
2			d (mbgl)				0.00				- Tor	t Data
3			d (mbgl)				0.10					t Fit Line
4			d (mbgl)		38		0.20					6 ESD
8			$A_{s50} (m^2)$		Water Level m bgl		0.40					6 ESD
16			₇₅₋₂₅ (m ³)		Ne		0.50					
30		1	t ₇₅ (min)		rLe		0.60					
60			t ₂₅ (min)		ate		0.70					
90		Da	ata Fit R ²		\geq		0.80					
120							0.90					
							1.00		I			
	Infiltration rate	f (ms ⁻¹)		ID DATA			Тс	tal effect	ive storage	e depth (esd) (m) 0.00	0
Carried o		1		Gravity fed	through	2" pipe f			3	Logged		Checked
										00**		

roject	Abermu	le Business Park					Status		LOCATION ID
roject II	0 1002641	4					PRE	LIMINARY	SA15
	t Details								
	Test 1	Test 2 Test 3		Ground	Level	92.32	2 mAOD	Date Excava	ted 08/01/2019
Dep	oth 1.10	1.10 1.10				315853.1	LmE	Date Teste	
Wic	ith 0.50	0.50 0.50		Coor	dinate	294260.61	LmN		
Len	gth 2.00	2.00 2.00							
est 1	-								
Time min	Depth to Water m bgl	Test Parame	eters			0 5	Elapse	ed Time (min) 10	15 20
0	0.67	75% esd (mbgl)	0.78		0.00				
1	0.73	50% esd (mbgl)	0.89		0.20			•	Test Bata
2	0.78	25% esd (mbgl)	0.99	60				••••	••• Best Fit Line
3	0.81	A _{s50} (m ²)	2.08	d M	0.40				 75% ESD 25% ESD
4	0.84	V _{p75-25} (m ³)	0.22	vel	0.60				
5	0.87	t ₇₅ (min)	2.7E+00	Water Level m bgl	0.00				
6	0.91	t ₂₅ (min)	9.4E+00	/ate	0.80	••••	•••••		
7	0.94	Data Fit R ²	0.961	5	1.00		•••••••	.	
9	0.98				1.20				•
15	1.09				1.20				
	Infiltration rate	f (ms ⁻¹) 2.59	E-04			Total effecti	ve storage	depth (esd) (m)	0.43
est 2									
Time min	Depth to Water	Test Parame	ters			0 5	Elapse 10	ed Time (min) 15 20	25 30
0	m bgl 0.49	75% esd (mbgl)	0.64		0.00	0 3	10	15 20	25 30
1	0.49	50% esd (mbgl)	0.80						 Test Data
2	0.55	25% esd (mbgl)	0.95		0.20			••	•••• Best Fit Line
4	0.68	$A_{s50} (m^2)$	2.53	m bgl	0.40				75% ESD 25% ESD
5	0.72	$V_{p75-25} (m^3)$	0.31		0.60	•			2378 L3D
7	0.78	t ₇₅ (min)	3.1E+00	Water Leve					
9	0.81	t ₂₅ (min)	1.6E+01	ater	0.80		·		
10	0.83	Data Fit R ²	0.992	\geq	1.00				• = = =
15	0.93				1 20				
20	1.02				1.20				
	Infiltration rate	f (ms ⁻¹) 1.53	E-04			Total effecti	ve storage	depth (esd) (m)	0.61
est 3									
Time	Depth to Water	Test Parame	ters				Elapse	d Time (min)	
min	m bgl					0 5 1			25 30 35
	0.39	75% esd (mbgl)	0.57		0.00				Test Data
0	0.49	50% esd (mbgl)	0.75		0.20			••••	••• Best Fit Line
0 2	0.57	25% esd (mbgl)	0.92	1 B C	0.40				- 75% ESD
2 4		$A_{s50} (m^2)$	2.78	E	0.40	•.			– 25% ESD
2 4 6	0.67	V _{p75-25} (m ³)	0.36	eve	0.60				
2 4 6 8	0.70		e c = -	Ľ.		····	••••		
2 4 6 8 10	0.70 0.74	t ₇₅ (min)	3.8E+00	G	0.80			••••	
2 4 6 8 10 15	0.70 0.74 0.83	t ₇₅ (min) t ₂₅ (min)	2.0E+01	Vater	0.80		-	• 	
2 4 8 10 15 20	0.70 0.74 0.83 0.91	t ₇₅ (min)		Water Level m bgl	0.80 1.00				
2 4 8 10 15 20 25	0.70 0.74 0.83 0.91 1.00	t ₇₅ (min) t ₂₅ (min)	2.0E+01	Water					
2 4 6 8 10 15 20	0.70 0.74 0.83 0.91	t ₇₅ (min) t ₂₅ (min) Data Fit R ²	2.0E+01	Water	1.00			depth (esd) (m)	0.71

ased on I	I Pit Soa BRE DG 365:2016	,				- 1-		ADIS	built assets	U
roject	Abermu	le Business Park					Status		LOCATIC	N ID
roject II	0 1002641	Л					PRF	LIMINARY	SA1	6
-	it Details								5/(1	0
	Test 1	Test 2 Test 3		Ground		02 /2	mAOD	Date Excava	itod 08/	01/2019
Dom				Ground	Level	315835.34	_	Date Excava		01/2019 01/2019
Dep		1.10 1.10		Coor	dinates			Date Teste	eu 08/	01/2019
Wic		0.50 0.50				294248.99	9 min			
Len	gth 1.90	1.90 1.90								
est 1	D									
Time min	Depth to Water m bgl	Test Parame	ters			0 5	Elapse	ed Time (min)	15	20
0	0.50	75% esd (mbgl)	0.65		0.00	0 5		10	15	20
1	0.50	50% esd (mbgl)	0.80		0.00				Test Data	
					0.20			••••	••• Best Fit Line	5
2	0.63	25% esd (mbgl) (m^2)	0.95	bgl	0.40				– 75% ESD	
3	0.69	$A_{s50} (m^2)$	2.39	2	0.40	•			– 25% ESD	
4	0.72	$V_{p75-25} (m^3)$	0.29	eve	0.60					
5	0.75	t ₇₅ (min)	3.0E+00	Water Level m bgl	0.80	•••••	•••			
7	0.82	t ₂₅ (min)	1.1E+01	Vate	0.00		•••••	••••		
10	0.91	Data Fit R ²	0.963	>	1.00				•	
15	1.05				1.20					
					1.20					
	Infiltration rate	f (ms ⁻¹) 2.43	E-04			Total effecti	ve storage	depth (esd) (m)	0.60	
est 2										
Time	Depth to Water	Test Parame	ters				Elapse	d Time (min)		
min	m bgl				0.00	0 10	20	30	40	50
0	0.35	75% esd (mbgl)	0.54		0.00				Test Data	
1	0.36	50% esd (mbgl)	0.73		0.20			•••	•••• Best Fit Lin	е
2	0.40	25% esd (mbgl)	0.91	m bgl	0.40	••			– 75% ESD	
4	0.46	A _{s50} (m ²)	2.75		0.40				– 25% ESD	
5	0.49	V _{p75-25} (m ³)	0.36	Water Level	0.60					
7	0.55	t ₇₅ (min)	6.1E+00	er Le	0.80		•••••			
10	0.60	t ₂₅ (min)	3.2E+01	Vate	0.00					
15	0.70	Data Fit R ²	0.980	>	1.00				••••	
20	0.79				1.20					
30	0.95				1.20					
	Infiltration rate	f (ms ⁻¹) 8.36	E-05			Total effecti	ve storage	depth (esd) (m)	0.75	
est 3										
Time	Depth to Water	Test Parame	ters				Flanse	d Time (min)		
min	m bgl					0 20	Liabac	40	60	80
0	0.25	75% esd (mbgl)	0.46		0.00				_	
2	0.31	50% esd (mbgl)	0.68		0.20			•	i cot Data	
4	0.35	25% esd (mbgl)	0.89	60		i.		••••	Best Fit Line	8
6	0.39	A _{s50} (m ²)	2.99	Water Level m bgl	0.40				- 75% ESD	
8	0.43	V _{p75-25} (m ³)	0.40	/el r	0.60				23,0 230	
10	0.47	t ₇₅ (min)	9.2E+00	Lev	2.00	· · ·	••••			
15	0.56	t ₂₅ (min)	5.3E+01	iter	0.80			***		
20	0.61	Data Fit R ²	0.997	Ng	1.00				••	
· -	0.72		2.007		1.00					
30					1.20					
30 45	U 82									
30 45	0.85 Infiltration rate	f (ms ⁻¹) = 17	F-05			Total offect	va starage	denth (acd) (m)	0 95	
	Infiltration rate		'E-05 Water gravi	ty fed th	rough 2'	Total effecti pipe from IBC.	ve storage	depth (esd) (m) Logged	0.85 Check	od

APPENDIX E

Certification of Field Apparatus

SPT Hammer Energy Test Report

in accordance with BSEN ISO 22476-3:2005

James Fisher Testing Services Ltd
40A Hardwick Grange
Ruby House
Woolston
Warrington
WA1 4RF

SPT Hammer Ref: 62... Test Date: 21/12/2018 Report Date: 18/01/2019 File Name: 62.spt Test Operator: JS

Instrumented Rod Data

Diameter d _r (mm):	54
Wall Thickness t_r (mm):	6.5
Assumed Modulus E_a (GPa):	208
Accelerometer No.1:	8965
Accelerometer No.2:	8966

SPT Hammer Information

Hammer Mass	m (kg):	63.5
Falling Height	h (mm):	760
SPT String Leng	gth L (m):	14.5

Comments / Location

3

2

1

0

0 -1

-2

-3

-5 -6

-7

0

1

0

2 3

2 3

Client: PB Drilling Location: JFTS Warrington Laboratory

Velocity

4 5

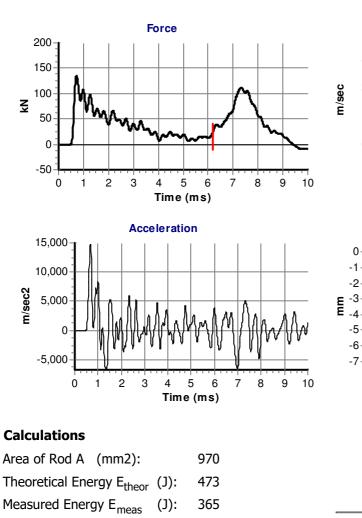
Displacement

Time (ms)

5

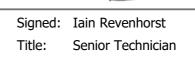
Time (ms)

6


4

6

7


7 8 9 10

8 9 10

Energy Ratio E_r (%):

ARC		Projec	ct:						Abermule	2			Weather:	Mair	inly sunny with occasional light rain		
ARU	AD13	Job N	umber:		:	10026414		Date:			22/01/2019)	Engineer:			RB	
Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (Pa)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	LEL (%)	CO2 (% v/v)	O2 (% v/v)	H2S (ppm)	CO (ppm)		Depth to Water (m)	-	Comments (all readings from GL, note datum height if different)	
BH101	22/01/2019 14:03	988	3	<u>Peak:</u> <u>Steady:</u>	<u>Peak:</u> 0.0 <u>Steady:</u> 0.0	Initial 30 60 90 120 150 180	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.20 0.20 0.20 0.20 0.20 0.20 0.20	0.00 20.20 20.40 20.70 20.90 21.00 21.10	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 1.00 0.00 0.00 0.00 0.00 0.00		4.04	9.34	2.51 Pa before tap opened	
BH102	22/01/2019 10:00	991	3	Peak: Steady:	Peak: 0.0 <u>Steady:</u> 0.0	Initial 30 60 90 120 150 180	0.00 0.10 0.10 0.10 0.10 0.10 0.10 0.10	0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00	0.20 0.00 4.10 4.10 4.10 4.10 4.10 4.10 4.20	0.00 12.00 10.50 10.30 10.20 10.10 10.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		4.00	4.99	Flow 1.9 then zeroed	
BH103	22/01/2019 15:45	988	3	<u>Peak:</u> Steady:	<u>Peak:</u> 0.0 Steady: 0.0	Initial 30 60 90 120 150 180	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 3.20 3.30 3.30 3.30 3.30 3.30 3.30	0.00 19.10 18.60 18.50 18.50 18.50 18.50	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00		4.09	8.90	1.69 Pa before tap opeened	
BH104	22/01/2019 15:45				B	Borehole c	ould not be	accessed									
BH105	22/01/2019 15:45				B	Borehole c	ould not be	accessed									
BH106	22-01-2019 15:45:00 PM	987		<u>Peak:</u> <u>Steady:</u>	<u>Peak:</u> 0.0 <u>Steady:</u> <u>0.0</u>	Initial 30 60 90 120 150 180	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 4.60 4.70 4.70 4.70 4.70 4.70 4.70	0.00 16.80 16.30 16.20 16.20 16.20 16.20	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00		2.65	3.59	4.85 Pa before tap opened	

Notes:

Previous weather conditions, Atmosphic pressure trend and rate, flooding, soil moisture, water draw in tube, wind direction/strength, condition of monitoring point, missing/open tap, datum level, vegetation stress, odours, bubbles, etc.

QA Checklist:					
Weather conditions logged for previous 24 hrs					
Gas monitor calibrated					
All filters in place	x				
Flow reading stable and zeroed	x				

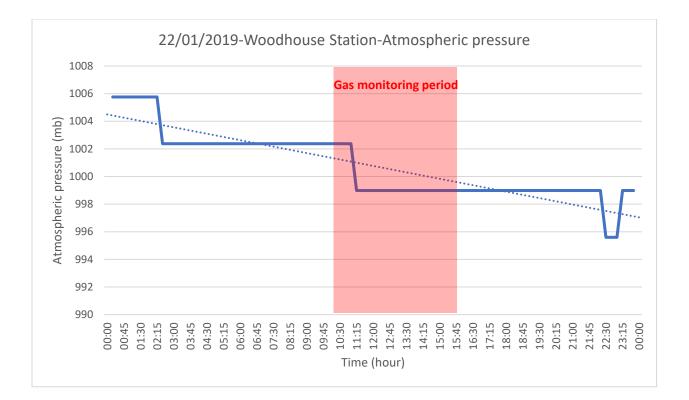
Instrument Details:	Serial No.	Hyder/other ref.
Landfill Gas Analyser		Hired from Shaw City
PID		
Dip meter/ interface probe		

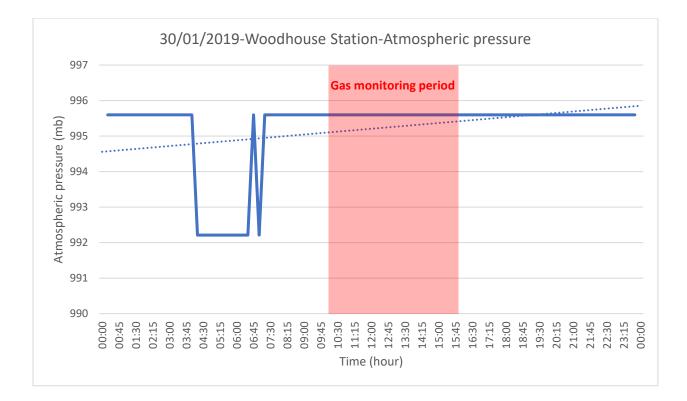
Ambient Concentration						
CH4 0.1%						
CO2	0.1%					
02	21.60%					
H2S	0%					
CO 0%						

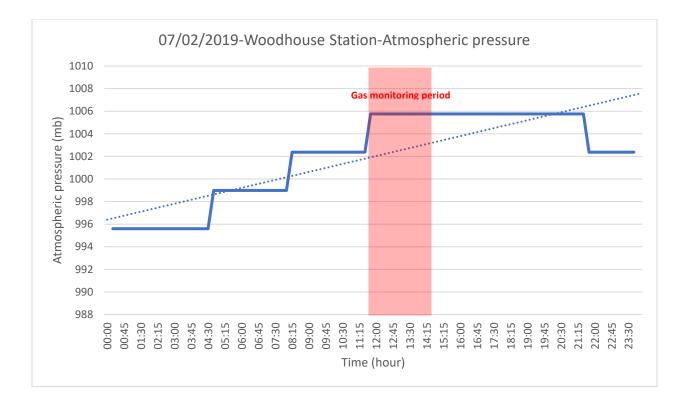
ARCADIS Project:			ct:						Abermule	9				Weather:			Snowy		
		Job N	umber:		1	10026414		Date:			30/01/201	9		Engineer:			JB		
									Į		, , 		I		Į				
lonitoring Point	Date/ Time	Atmos. Pressure	Temp. (°C)	Well Pressure	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	LEL (%)	CO2 (% v/v)	O2 (% v/v)	H2S (ppm)	CO (ppm)			Depth to Water (m)	Depth to base (m)	Comments (all readings from GL, no		
eference		(mbar)	()	(Pa)		(000)	(,,,,,,,,	(//	(// -/	(,,,,,,,,					,	,	datum height if differen		
						Peak:	Peak:	Initial	0.00	0.00	0.90	18.50	0.00	0.00			-		
					<u>0</u>	15	0.00	0.00	0.00	19.20	0.00	10.00							
						30 45	0.00	0.00	0.00	19.20 19.50	0.00	10.00 10.00							
BH101	30/10/2019 00:00	982	-2	Steady:	Steady:	60	0.00	0.00	0.00	19.50	0.00	10.00			3.97	9.31			
					<u>0.0</u>	120	0.00	0.00	0.00	19.70	0.00	10.00							
						240	0.00	0.00	0.00	19.60	0.00	10.00							
						360	0.00	0.00	0.00	19.70	0.00	10.00							
				Peak:	Peak:	Initial	0.00	0.00	0.30	19.40	0.00	0.00			-				
					0.00	15	0.00	0.00	4.40	8.80	0.00	0.00							
					0.00	30	0.00	0.00	4.50	7.40	0.00	10.00			-				
BH102	30/01/2019 00:00	983	-2	Steady:	Steady:	45 60	0.00	0.00	4.50 4.50	7.20	0.00	10.00 10.00			3.92	4.96			
					0.00	120	0.00	0.00	4.50	7.10	0.00	10.00							
						240	0.00	0.00	4.50	7.20	0.00	10.00							
						360	0.00	0.00	4.50	7.10	0.00	10.00							
				Peak:	<u>Peak:</u> <u>0</u>	Initial	0.00	0.00	0.20	19.50	0.00	0.00							
					<u>v</u>	15	0.00	0.00	0.90	18.80	0.00	10.00							
						30	0.00	0.00	0.90	18.60	0.00	10.00			-				
BH103	30/01/2019 00:00	982	-2	<u>Steady:</u>	Steady:	45	0.00	0.00	0.90	18.50	0.00	10.00			3.99	8.93			
				<u>Steady.</u>	<u>Steady:</u> <u>0</u>	60	0.00	0.00	0.90	18.50	0.00	10.00							
						120 240	0.00	0.00	0.40	18.30 18.20	0.00	10.00 10.00							
						360	0.00	0.00	1.00	18.20	0.00	10.00			-				
				Peak:	Peak:	Initial	0.80	18.30	2.00	17.50	0.00	0.00							
					<u>-4.4</u>	15	0.00	0.00	0.50	19.20	0.00	10.00							
						30	0.00	0.00	0.40	19.50	0.00	10.00							
BH104	30/01/2019 00:00	984	-2			45	0.00	0.00	0.40	19.30	0.00	10.00			4.30	9.15			
			_	<u>Steady:</u>	<u>Steady:</u>	60	0.00	0.00	0.40	19.40	0.00	10.00							
					<u>-1.6</u>	120 240	0.00	0.00	0.40	19.00 18.90	0.00	10.00 10.00			-				
						360	0.00	0.00	0.40	18.90	0.00	10.00							
				Peak:	Peak:	Initial	0.30	8.40	1.90	17.40	0.00	10.00							
					<u>0</u>	15.00	0.00	0.00	1.90	16.90	0.00	10.00							
						30.00	0.00	0.00	1.90	16.80	0.00	10.00							
BH105	30/01/2019 00:00	981	-2			45.00	0.00	0.00	2.00	16.70	0.00	10.00			4.07	5.52			
COTING	50/01/2019 00.00	301	-2	<u>Steady:</u>	<u>Steady:</u>	60.00	0.00	0.00	2.00	16.70	0.00	10.00			4.07	5.52			
					<u>0</u>	120.00	0.00	0.00	2.00	16.50	0.00	10.00							
						240.00	0.00	0.00	2.00	16.40	0.00	10.00							
				Peak:	Peak:	360.00 Initial	0.00	0.00	2.00 0.00	16.40 19.90	0.00	10.00 0.00							
					<u> </u>	15.00	0.00	0.00	3.40	19.90	0.00	10.00							
					⊻	30.00	0.00	0.00	2.50	16.60	0.00	10.00		+					
	20/01/2010 00:00	002				45.00	0.00	0.00	2.50	16.60	0.00	10.00		1	2.74	2.54			
BH106	30/01/2019 00:00	983	-2	<u>Steady:</u>	Steady:	60.00	0.00	0.00	2.50	16.60	0.00	10.00			2.71	3.51			
					<u>0</u>	120.00	0.00	0.00	2.50	16.50	0.00	10.00							
						240.00	0.00	0.00	2.50	16.50	0.00	10.00							
						360.00	0.00	0.00	2.50	16.50	0.00	10.00							
otes:	etions 00/ subscriptions the		ind					1			1	· I					Ambient Concentratio		
is concent	rations 0% unless oth	erwise specif	ieu.														CH4 0% CO2 0%		
																	O2 0.00%		
																	H2S 0%		
																-	CO 0%		

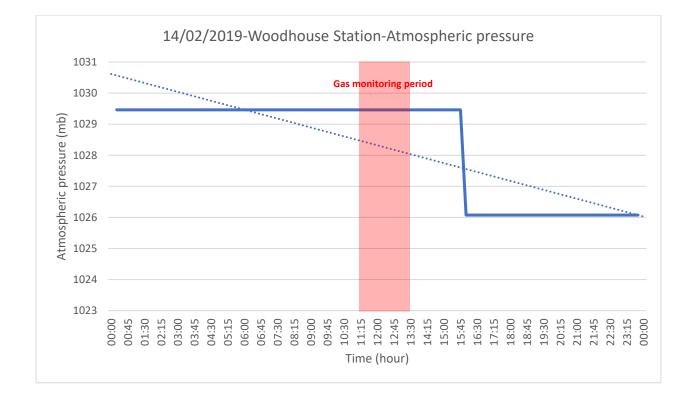
Previous weather conditions, Atmosphic pressure trend and rate, flooding, soil moisture, water draw in tube, wind direction/strength, condition of monitoring point, missing/open tap, datum level, vegetation stress, odours, bubbles, etc.

QA Checklist:					
Weather conditions logged for previous 24 hrs	x				
Gas monitor calibrated x					
All filters in place	x				
Flow reading stable and zeroed	x				


Instrument Details:	Serial No.	Hyder/other ref.
Landfill Gas Analyser		Hired from Shaw City
PID		
Dip meter/ interface probe		


Project:			Abermule									Weather: Mainly sunny v			with occasional light rain											
		Job N	umber:		1	10026414		Date:			07/02/201	9		Engineer:			RF									
								1	1						1											
Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (Pa)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	LEL (%)	CO2 (% v/v)	O2 (% v/v)	H2S (ppm)	CO (ppm)			Depth to Water (m)	Depth to base (m)	Comr (all readings f datum heigh									
				Peak:	Peak:	Initial	0.10	1.00	0.10	21.50	0.00	0.00														
						30	0.10	1.00	0.10	21.50	0.00	0.00														
DUADA	07/02/2010 11 15	000			-0.1	60	0.10	1.00	0.10	21.60	0.00	0.00														
BH101	07/02/2019 11:45	993	6	<u>Steady:</u>		90	0.10	1.00	0.10	21.60	0.00	0.00			3.95	9.48	No	rain								
					Steady:	120 150	0.10 0.10	1.00	0.10	21.60 21.60	0.00	0.00														
					0.0	180	0.10	1.00	0.10	21.00	0.00	0.00														
				Peak:	Peak:	Initial	0.10	1.00	1.60	18.30	0.00	0.00														
						30	0.10	1.00	1.70	17.10	0.00	0.00														
					<u>0.0</u>	60	0.10	1.00	1.80	16.90	0.00	0.00			-											
BH102	07/02/2019 12:30	993	6			90	0.10	1.00	1.90	16.70	0.00	0.00			3.92	4.96	No	rain								
					<u>Steady:</u> 0.0	120	0.10	1.00	2.20	16.10	0.00	0.00			_											
					0.0	150	0.10	1.00	2.50	15.70	0.00	0.00			-											
						180	0.10	1.00	2.60	15.50	0.00	0.00														
				Peak:	Peak:	Initial	0.10	1.00	0.60	19.20	0.00	1.00														
					0.0	30	0.10	1.00	2.70	18.90	0.00	1.00			-											
01102	07/02/2019 13:00	002	6	c		<u>0.0</u>	60	0.10	1.00	2.90	18.90	0.00	0.00			2.06	0.10	Light rain	at time of							
BH103	07/02/2019 13:00	993		Steady:		90 120	0.10	1.00	2.90	18.40	0.00	0.00			3.96	9.10	reco	rding								
					Steady:	120	0.10	1.00 1.00	3.00 3.10	18.30 18.30	0.00	0.00			-											
					0.0	180	0.10	1.00	3.10	18.30	0.00	0.00			-											
				Dook:	Peak:	Initial	0.10	1.00	0.20	21.10	0.00	1.00														
					<u>reak.</u>	30	0.10	1.00	0.10	21.30	0.00	0.00			-		Light rain	at time of								
					<u>0.0</u>	60	0.10	1.00	0.10	21.40	0.00	0.00					recor									
BH104	07/02/2019 13:20	993	7	7	7	7	7	7	7	7	7	7			90	0.10	1.00	0.10	21.50	0.00	0.00			4.26	9.29	Top of well above bund wa
				<u>Steady:</u>	Steady:	120	0.10	1.00	0.10	21.50	0.00	0.00					flooded so water had to b									
							150	0.10	1.00	0.10	21.50	0.00	0.00			_		removed prior to monitori								
					<u>0.0</u>	180	0.10	1.00	0.10	21.50	0.00	0.00														
BH105	07/02/2019 14:00	993	7			Bund wa	as loose so	No rain. no gas reco	ordings we	re taken.					4.05	5.55										
			1	Peak:	Peak:	Initial	0.10	1.00	2.20	20.40	0.00	0.00														
						30	0.10	1.00	2.20	19.90	0.00	0.00			1											
					0.0	60	0.10	1.00	2.30	19.90	0.00	0.00														
BH106	07/02/2019 14:20	994	7			90	0.10	1.00	2.30	19.80	0.00	0.00			2.73	3.59	Noi	rain.								
				Steady:	<u>Steady:</u>	120	0.10	1.00	2.30	19.80	0.00	0.00														
					-0.0	150	0.10	1.00	2.40	19.80	0.00	0.00														
						180	0.10	1.00	2.40	19.90	0.00	0.00														
tes:											1	I					Ambient Co	ncentratio								
																	CH4	0.1%								
																	CO2	0.1%								
																	02	21.60%								
																	H2S	0%								
																	СО	0%								


	CADIS	Projec	ct:						Abermule	9				Weather:			Sunny	
		Job N	umber:		1	10026414		Date:			14/02/201	.9		Engineer:			RF	
															ļ			
Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (Pa)	Flow Rate (l/h)	Time (sec)	CH4 (% v/v)	LEL (%)	CO2 (% v/v)	O2 (% v/v)	H2S (ppm)	CO (ppm)			Depth to Water (m)	Depth to base (m)	(all readings	ments from GL, note ht if different)
				<u>Peak:</u>	Peak:	Initial	0.10	1.00	0.20	21.10	0.00	0.00						
					-0.0	30 60	0.10 0.10	1.00 2.00	0.20 0.10	21.40 21.50	0.00	0.00 0.00			-			
BH101	14-02-19 11.15	1019	9	<u>Steady:</u>	<u>Steady:</u>	90 120	0.10 0.10	2.00 2.00	0.10 0.10	21.60 21.60	0.00	0.00 0.00			3.91	8.30		
					+0.0	150 180	0.10	2.00	0.10 0.10	21.70 21.70	0.00	0.00 0.00			_			
					Peak:	Initial 30	0.10	2.00 2.00	0.70 5.60	16.70 7.90	0.00	0.00			-			
BH102	14-02-19 11.30	1019	9		+0.1	60 90	0.10	2.00	5.60 5.60	7.90	0.00	0.00			3.20	4.96		
				<u>Steady:</u>	<u>Steady:</u> -0.1	120 150	0.10	2.00	5.60 5.60	7.90	0.00	0.00						
				<u>Peak:</u>	Peak:	180 Initial 30	0.10 0.10 0.10	2.00 1.00 1.00	5.60 0.40 3.20	7.90 21.50 18.00	0.00 0.00 0.00	0.00 0.00 0.00			-			
BH103	14-02-19 11.55	1019	9		+0.0	60 90	0.10	1.00 1.00	3.20 3.20 3.20	17.90 17.90	0.00	0.00			3.34	8.92		
			<u>Steady:</u>	<u>Steady:</u>	120 150	0.10	1.00 1.00	3.20 3.20	17.90 17.90	0.00	0.00			-				
					+0.0 <u>Peak:</u>	180 Initial	0.10 0.10	1.00 1.00	3.20 0.30	17.80 21.10	0.00	0.00 4.00						
					-0.0	30 60	0.10 0.10	1.00 1.00	0.00 0.00	20.90 20.90	0.00	3.00 3.00			_			
BH104	14-02-19 12.20	1018	10	<u>Steady:</u>	<u>Steady:</u>	90 120	0.10 0.10	1.00 1.00	0.00	20.90 20.90	0.00	3.00 3.00			3.66	9.15		
				Peak:	-0.0	150 180	0.10	1.00 1.00	0.10	20.90 20.90	0.00	3.00 3.00			-			
					<u>Peak:</u> +0.0	Initial 30	0.10	1.00 1.00	0.30	21.50 18.30	0.00	1.00 0.00			-			
BH105	14-02-19 13.00	1018	11	<u>Steady:</u>	<u>Steady:</u>	60 90 120	0.10 0.10 0.10	1.00 2.00 2.00	2.20 2.20 2.30	18.20 18.20 18.20	0.00 0.00 0.00	0.00 0.00 0.00			3.45	5.52		
					-0.0	120 150 180	0.10	2.00	2.30 2.30 2.30	18.20 18.20 18.20	0.00	0.00			-			
				<u>Peak:</u>	<u>Peak:</u>	Initial 30	0.10	1.00 1.00	2.30 2.40 2.50	19.00 18.20	0.00	0.00			-			
BH106	14-02-19 13.15	1018	11		-0.0	60 90	0.10	1.00	2.50 2.50 2.50	18.20 18.10	0.00	0.00			2.40	3.56		
				<u>Steady:</u>	<u>Steady:</u> -0.0	120 150	0.10 0.10	1.00 1.00	2.50 2.50	18.10 18.10	0.00	0.00 0.00			-			
						180	0.10	1.00	2.50	18.10	0.00	0.00						
Notes:											·						Ambient C	oncentration
																	CH4	0.1%
																	CO2	0.1%
																	02	21.50%
																	H2S CO	0% 0%
	nditions, Atmosphic pressure trei	ad and make file a diam.	oil moisturo u	uator draw in tubo	wind direction (st	renath conditio	on of monitoring r	noint missing lon	entan datum la	vel vegetation a	ress adours hubb	nles etc						U%


QA Checklist:							
Weather conditions logged for previous 24 hrs	x						
Gas monitor calibrated	х						
All filters in place	х						
Flow reading stable and zeroed	x						

Instrument Details:	Serial No.	Hyder/other ref.
Landfill Gas Analyser		Hired from Shaw City
PID		
Dip meter/ interface probe		

APPENDIX G

Geotechnical Laboratory Results

Qty

4

1

Contract Number: 41505

Client Ref: Client PO: **14018549**

Laboratory Report

Report Date: 10-01-2019

Client Arcadis Hyder Site Investigation Services 5th Floor 401 Faraday Street Birchwood Park Warrington WA3 6GA

Contract Title: Abermule CBR testing 4 days on site For the attention of: Karl Addison

Date Received: 06-11-2018 Date Commenced: 06-11-2018 Date Completed: 10-01-2019

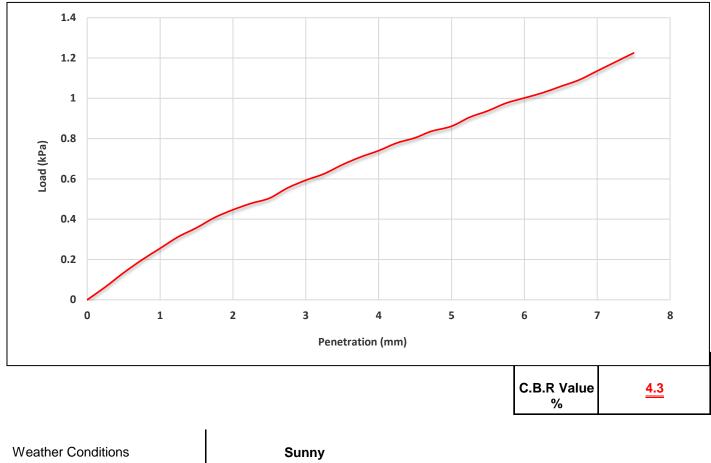
Test Description

Day Rate: CBRS BS 1377:1990 - Part 9 Cl 4.3 - * UKAS includes mob & B&B

Disposal of samples for job

Notes: Observations and Interpretations are outside the UKAS Accreditation

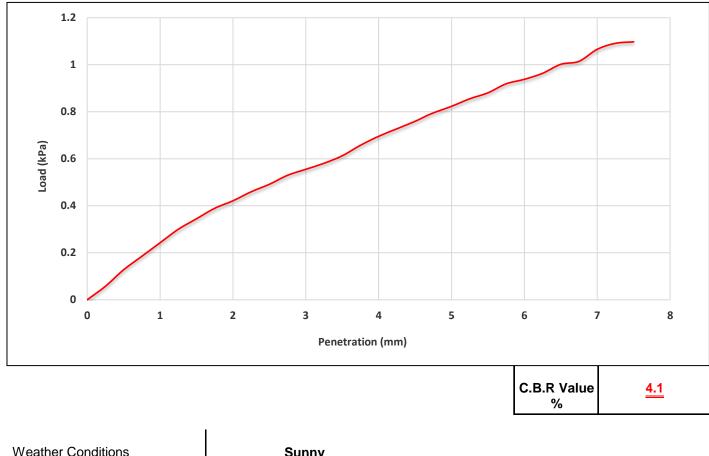
- * denotes test included in laboratory scope of accreditation
- # denotes test carried out by approved contractor
- $\ensuremath{@}$ denotes non accredited tests


This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved Signatories:

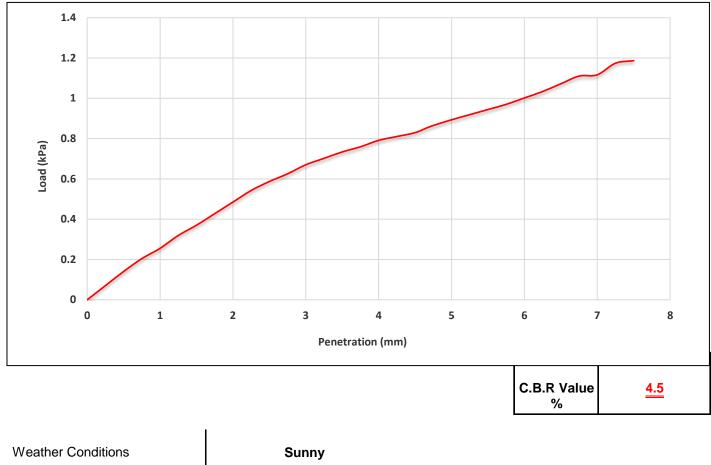
Alex Wynn (Associate Director) - Ben Sharp (Contracts Manager) - Emma Sharp (Office Manager) Paul Evans (Quality/Technical Manager) - Richard John (Advanced Testing Manager) - Sean Penn (Administrative/Accounts Assistant) Wayne Honey (Administrative/Quality Assistant)

GEO Site & Testing Services Ltd Unit 3-4, Heol Aur, Dafen Ind Estate, Dafen, Llanelli, Carmarthenshire SA14 8QN Tel: 01554 784040 Fax: 01554 784041 info@gstl.co.uk gstl.co.uk


CCTI		Contract Number	41505
GOIL	Determination of the Insitu California Bearing Ratio BS 1377: Part 9: 1990 Clause 4.3	Client Reference	14018549
Client	Arcadis	Test Date	07/01/2018
Site Location	Abermule CBR testing 4 days on site	Test Location	CBR 1
Sampling Method	BS 1377-1:1990 General requirements and sample preparation	Test Depth (m)	0.150
Soil Description	Brown fine gravelly silty CLAY.	Kentledge Type	Back of 4x4

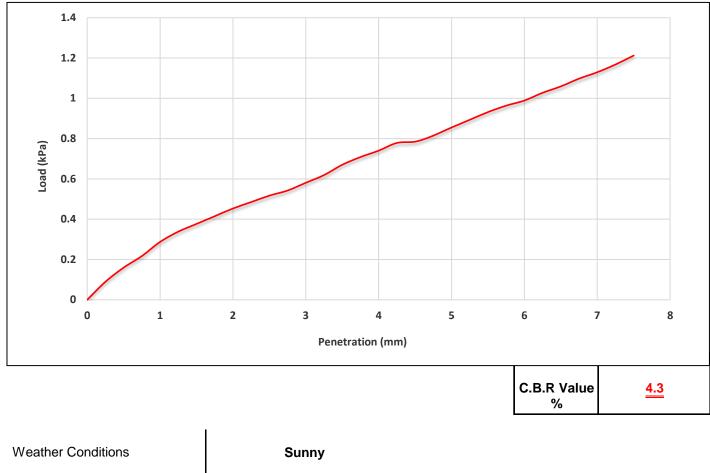
Ounny
9
N/A
25

Test Operator	Checked and Authorised by		Paul Evans	9 P CHO	
Cearan Bryan	Date	11/01/2019	Faul Evalis	d' r branz	
					2788


CCTI	CCTI		41505
UDIL	Determination of the Insitu California Bearing Ratio BS 1377: Part 9: 1990 Clause 4.3	Client Reference	14018549
Client	Arcadis	Test Date	07/01/2018
Site Location	Abermule CBR testing 4 days on site	Test Location	CBR 2
Sampling Method	BS 1377-1:1990 General requirements and sample preparation	Test Depth (m)	0.150
Soil Description	Brown fine gravelly silty CLAY.	Kentledge Type	Back of 4x4

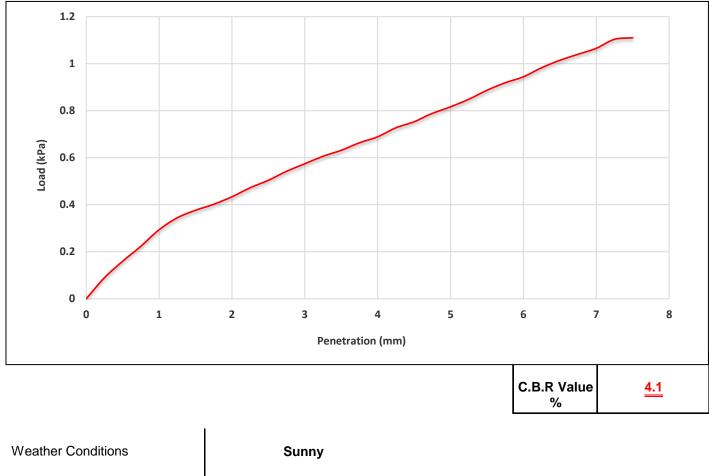
Weather Conditions	Sunny
Surcharge (kg)	9
Material Above 20mm (est.)	N/A
Moisture Content (%)	25
	1

Test Operator	Checked and	Checked and Authorised by Paul Evans		Paul Fuero	
Cearan Bryan	Date	11/01/2019	Faul Evalis	d' r branz	
					2788


CCTI	CTI		41505
GOIL	Determination of the Insitu California Bearing Ratio BS 1377: Part 9: 1990 Clause 4.3	Client Reference	14018549
Client	Arcadis	Test Date	07/01/2018
Site Location	Abermule CBR testing 4 days on site	Test Location	CBR 3
Sampling Method	BS 1377-1:1990 General requirements and sample preparation	Test Depth (m)	0.150
Soil Description	Brown fine gravelly silty CLAY.	Kentledge Type	Back of 4x4

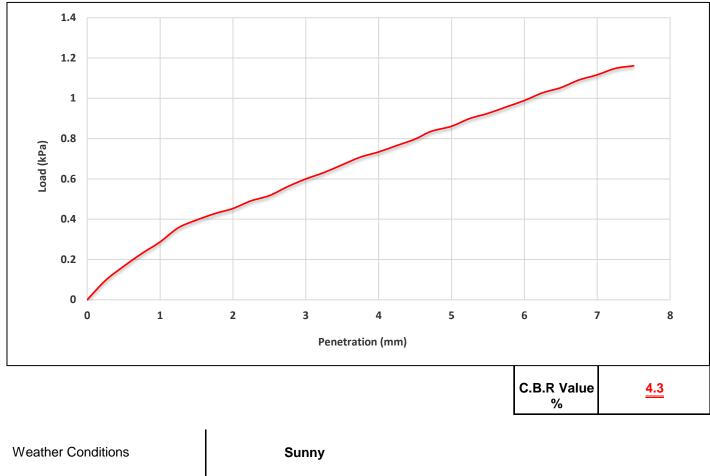
	Canny
Surcharge (kg)	9
Material Above 20mm (est.)	N/A
Moisture Content (%)	23

Test Operator	Checked and Authorised by		Paul Evans	9 P CHO	
Cearan Bryan	Date	11/01/2019	Faul Evalis	d' r branz	
					2788


CCTI	CT		41505
GOIL	Determination of the Insitu California Bearing Ratio BS 1377: Part 9: 1990 Clause 4.3	Client Reference	14018549
Client	Arcadis	Test Date	07/01/2018
Site Location	Abermule CBR testing 4 days on site	Test Location	CBR 4
Sampling Method	BS 1377-1:1990 General requirements and sample preparation	Test Depth (m)	0.150
Soil Description	Brown fine to coarse gravelly silty CLAY.	Kentledge Type	Back of 4x4

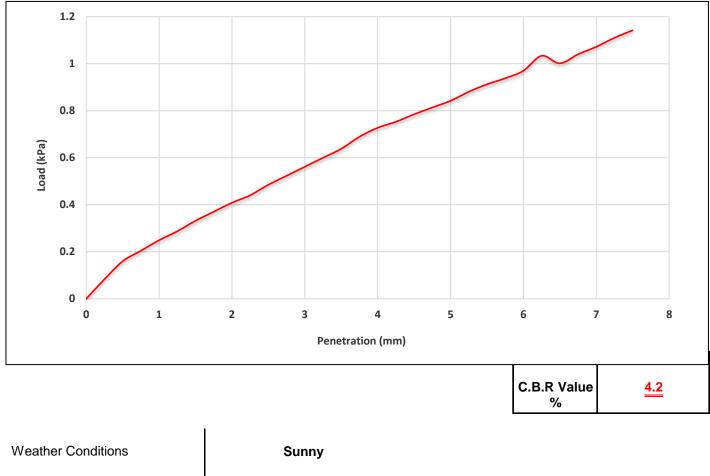
Surcharge (kg)	9
Material Above 20mm (est.)	N/A
Moisture Content (%)	23

Test Operator	Checked and Authorised by		Paul Evans	9 P CLO	
Cearan Bryan	Date	11/01/2019	Paul Evans	d' F branz	
					2788


CCTI			41505
GOIL	Determination of the Insitu California Bearing Ratio BS 1377: Part 9: 1990 Clause 4.3	Client Reference	14018549
Client	Arcadis	Test Date	07/01/2018
Site Location	Abermule CBR testing 4 days on site	Test Location	CBR 5
Sampling Method	BS 1377-1:1990 General requirements and sample preparation	Test Depth (m)	0.150
Soil Description	Brown fine to coarse gravelly silty CLAY.	Kentledge Type	Back of 4x4

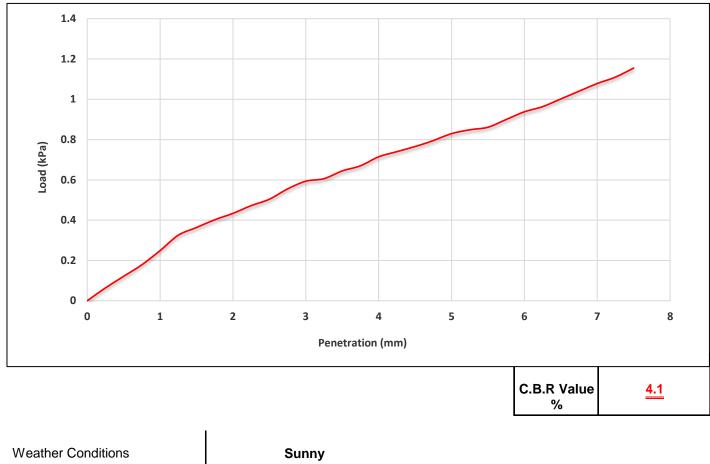
Surcharge (kg)	9
Material Above 20mm (est.)	N/A
Moisture Content (%)	25

Test Operator	Checked and	Authorised by	Paul Evans	900-0	
Cearan Bryan	Date	11/01/2019	Faul Evalis	a r branzi	
					2788


CCTI		Contract Number 41505	
GOIL	Determination of the Insitu California Bearing Ratio BS 1377: Part 9: 1990 Clause 4.3	Client Reference	14018549
Client	Arcadis	Test Date	07/01/2018
Site Location	Abermule CBR testing 4 days on site	Test Location	CBR 6
Sampling Method	BS 1377-1:1990 General requirements and sample preparation	Test Depth (m)	0.150
Soil Description	Brown fine to medium gravelly silty CLAY.	Kentledge Type	Back of 4x4

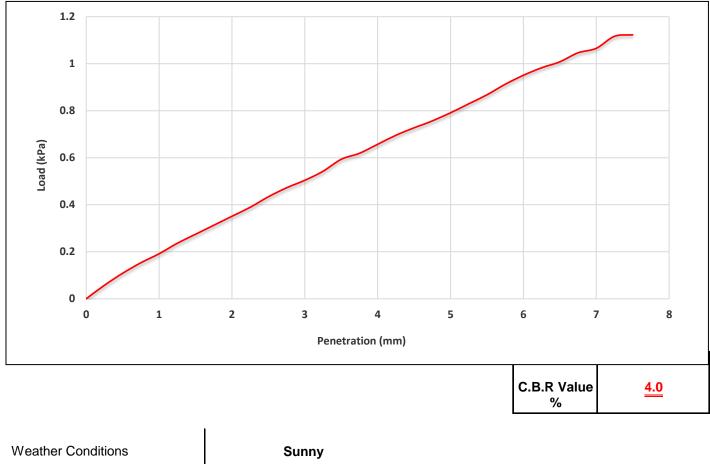
	-
Surcharge (kg)	9
Material Above 20mm (est.)	N/A
Moisture Content (%)	22
	1

Test Operator	Checked and	Authorised by	Paul Evans	9 P CHO	
Cearan Bryan	Date	11/01/2019	Faul Evalis	d' r branz	
					2788


CCTI	CT		41505
GOIL	Determination of the Insitu California Bearing Ratio BS 1377: Part 9: 1990 Clause 4.3	Client Reference	14018549
Client	Arcadis	Test Date	07/01/2018
Site Location	Abermule CBR testing 4 days on site	Test Location	CBR 7
Sampling Method	BS 1377-1:1990 General requirements and sample preparation	Test Depth (m)	0.150
Soil Description	Brown fine to medium gravelly silty CLAY.	Kentledge Type	Back of 4x4

Surcharge (kg)	9
Material Above 20mm (est.)	N/A
Moisture Content (%)	25

Test Operator	Checked and	Authorised by	Paul Evans	9 P CHO	
Cearan Bryan	Date	11/01/2019	Faul Evalis	d' r branz	
					2788


CCTI			41505
GOIL	Determination of the Insitu California Bearing Ratio BS 1377: Part 9: 1990 Clause 4.3	Client Reference	14018549
Client	Arcadis	Test Date	07/01/2018
Site Location	Abermule CBR testing 4 days on site	Test Location	CBR 8
Sampling Method	BS 1377-1:1990 General requirements and sample preparation	Test Depth (m)	0.150
Soil Description	Brown fine to medium gravelly silty CLAY.	Kentledge Type	Back of 4x4

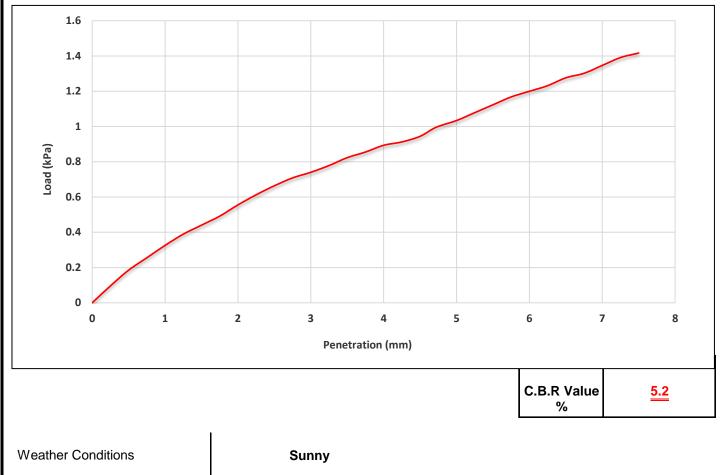
camy
9
N/A
25

Test Operator	Checked and	Authorised by	Paul Evans	900-0	
Cearan Bryan	Date	11/01/2019	Faul Evalis	a r branzi	
					2788


CCTI		Contract Number 41505	
GOIL	Determination of the Insitu California Bearing Ratio BS 1377: Part 9: 1990 Clause 4.3	Client Reference	14018549
Client	Arcadis	Test Date	07/01/2018
Site Location	Abermule CBR testing 4 days on site	Test Location	CBR 9
Sampling Method	BS 1377-1:1990 General requirements and sample preparation	Test Depth (m)	0.150
Soil Description	Brown fine to medium gravelly silty CLAY.	Kentledge Type	Back of 4x4

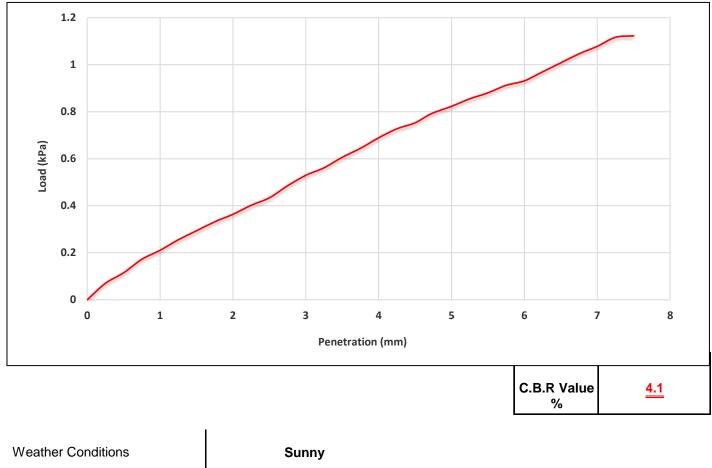
	Sunny
Surcharge (kg)	9
Material Above 20mm (est.)	N/A
Moisture Content (%)	25

Test Operator	Checked and	Authorised by	Paul Evans	900-0	
Cearan Bryan	Date	11/01/2019	Faul Evalis	a r branzi	
					2788


CCTI	Contract Number		41505
GOIL	Determination of the Insitu California Bearing Ratio BS 1377: Part 9: 1990 Clause 4.3	Client Reference	14018549
Client	Arcadis	Test Date	07/01/2018
Site Location	e Location Abermule CBR testing 4 days on site		CBR 10
Sampling Method	BS 1377-1:1990 General requirements and sample preparation	Test Depth (m)	0.150
Soil Description	Brown fine to coarse gravelly silty CLAY.	Kentledge Type	Back of 4x4
	•		

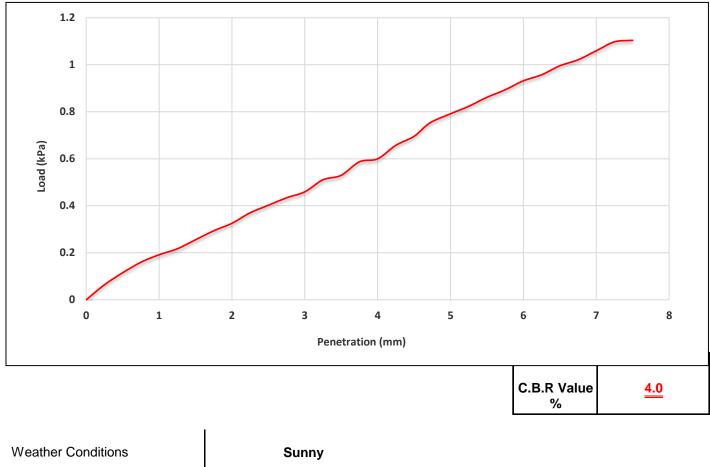
	cumy
Surcharge (kg)	9
Material Above 20mm (est.)	N/A
Moisture Content (%)	23

Test Operator	Checked and	Authorised by	Paul Evans	9000	
Cearan Bryan	Date	11/01/2019	Paul Evans	a r branz	
					2788


CCTI		Contract Number 41505	
GOIL	Determination of the Insitu California Bearing Ratio BS 1377: Part 9: 1990 Clause 4.3	Client Reference	14018549
Client	nt Arcadis		07/01/2018
Site Location	Abermule CBR testing 4 days on site	Test Location	CBR 11
Sampling Method	BS 1377-1:1990 General requirements and sample preparation	Test Depth (m)	0.150
Soil Description	Brown fine to medium gravelly silty CLAY.	Kentledge Type	Back of 4x4

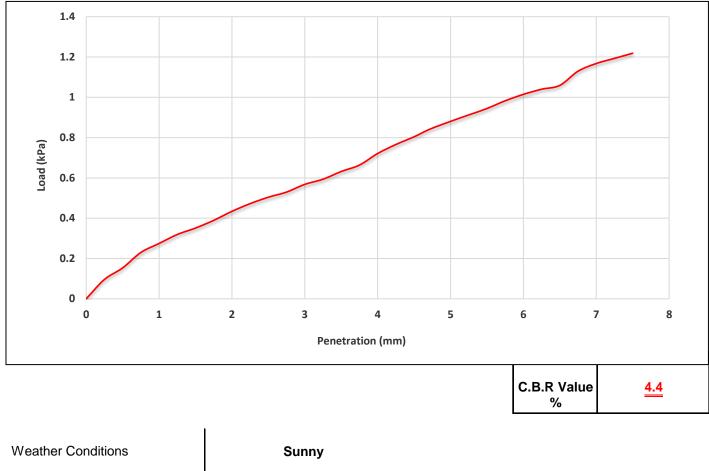
Surcharge (kg)	9
Material Above 20mm (est.)	N/A
Moisture Content (%)	23

Test Operator	Checked and	Authorised by	Paul Evans	9 P CHO	
Cearan Bryan	Date	11/01/2019	Faul Evalis	d' r branz	
					2788


CCTI		Contract Number 41505	
GOIL	Determination of the Insitu California Bearing Ratio BS 1377: Part 9: 1990 Clause 4.3	Client Reference	14018549
Client	at Arcadis		07/01/2018
Site Location	Abermule CBR testing 4 days on site	Test Location	CBR 12
Sampling Method	BS 1377-1:1990 General requirements and sample preparation	Test Depth (m)	0.150
Soil Description	Brown fine to medium gravelly silty CLAY.	Kentledge Type	Back of 4x4

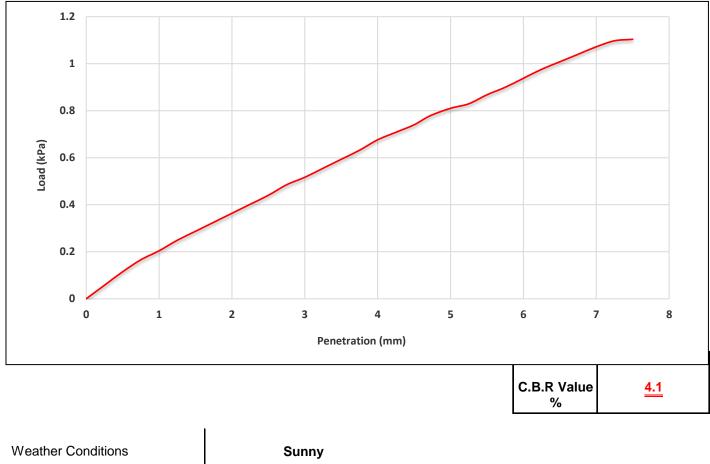
Surcharge (kg)	9
Material Above 20mm (est.)	N/A
Moisture Content (%)	25

Test Operator	Checked and	Authorised by	Paul Evans	9 P CHO	
Cearan Bryan	Date	11/01/2019	Faul Evalis	d' r branz	
					2788


CCTI		Contract Number 41505	
GOIL	Determination of the Insitu California Bearing Ratio BS 1377: Part 9: 1990 Clause 4.3	Client Reference	14018549
Client	nt Arcadis		07/01/2018
Site Location	Abermule CBR testing 4 days on site	Test Location	CBR 13
Sampling Method	BS 1377-1:1990 General requirements and sample preparation	Test Depth (m)	0.150
Soil Description	Brown fine to medium gravelly silty CLAY.	Kentledge Type	Back of 4x4

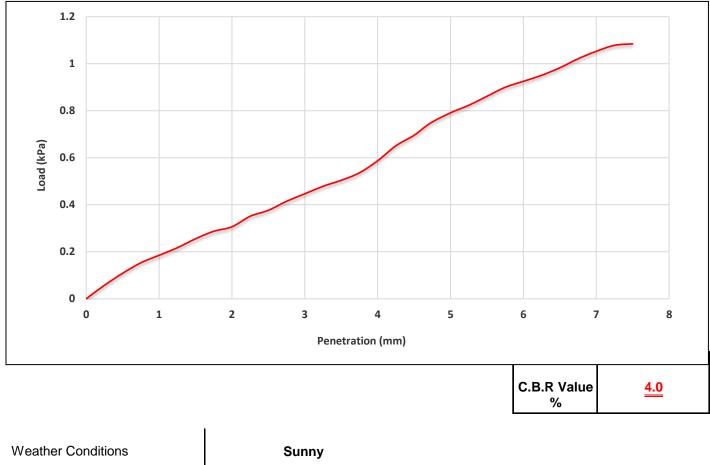
	Canny
Surcharge (kg)	9
Material Above 20mm (est.)	N/A
Moisture Content (%)	23

Test Operator	Checked and	Authorised by	Paul Evans	900-0	
Cearan Bryan	Date	11/01/2019	Faul Evalis	a r branzi	
					2788


CCTI	CCTI		41505
GOIL	Determination of the Insitu California Bearing Ratio BS 1377: Part 9: 1990 Clause 4.3	Client Reference	14018549
Client	Arcadis	Test Date	08/01/2018
Site Location	Abermule CBR testing 4 days on site	Test Location	CBR 14
Sampling Method	BS 1377-1:1990 General requirements and sample preparation	Test Depth (m)	0.150
Soil Description	Brown fine to medium gravelly silty CLAY.	Kentledge Type	Back of 4x4

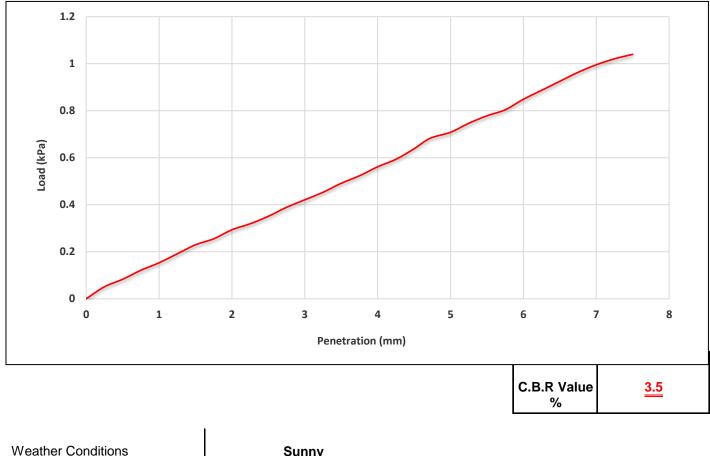
Surcharge (kg)	9
Material Above 20mm (est.)	N/A
Moisture Content (%)	22

Test Operator	Checked and	Authorised by	Paul Evans	9 P CHO	
Cearan Bryan	Date	11/01/2019	Faul Evalis	d' r branz	
					2788


CCTI	CCTI		41505
GOIL	Determination of the Insitu California Bearing Ratio BS 1377: Part 9: 1990 Clause 4.3	Client Reference	14018549
Client	Arcadis	Test Date	08/01/2018
Site Location	Abermule CBR testing 4 days on site	Test Location	CBR 15
Sampling Method	BS 1377-1:1990 General requirements and sample preparation	Test Depth (m)	0.150
Soil Description	Brown fine to medium gravelly silty CLAY.	Kentledge Type	Back of 4x4

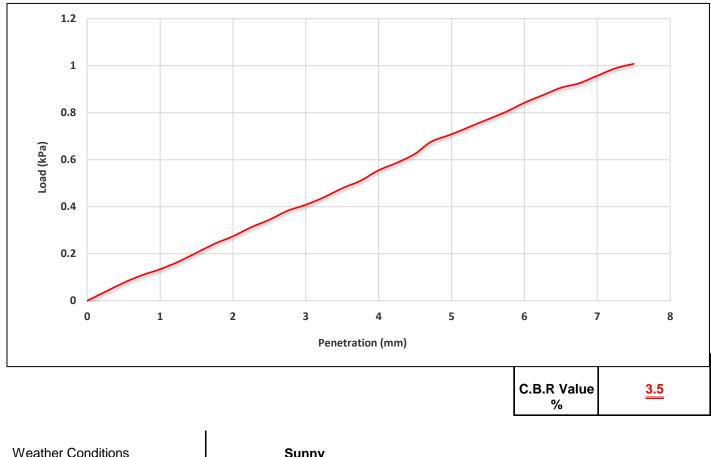
	Sunny
Surcharge (kg)	9
Material Above 20mm (est.)	N/A
Moisture Content (%)	23
	1

Те	est Operator	Checked and	Authorised by	Paul Evans	900-0	
Ce	earan Bryan	Date	11/01/2019	Faul Evalis	a r branzi	
						2788


CCTI	CCTI		41505
GOIL	Determination of the Insitu California Bearing Ratio BS 1377: Part 9: 1990 Clause 4.3	Client Reference	14018549
Client	Arcadis	Test Date	08/01/2018
Site Location	Abermule CBR testing 4 days on site	Test Location	CBR 16
Sampling Method	BS 1377-1:1990 General requirements and sample preparation	Test Depth (m)	0.150
Soil Description	Brown fine to medium gravelly silty CLAY.	Kentledge Type	Back of 4x4

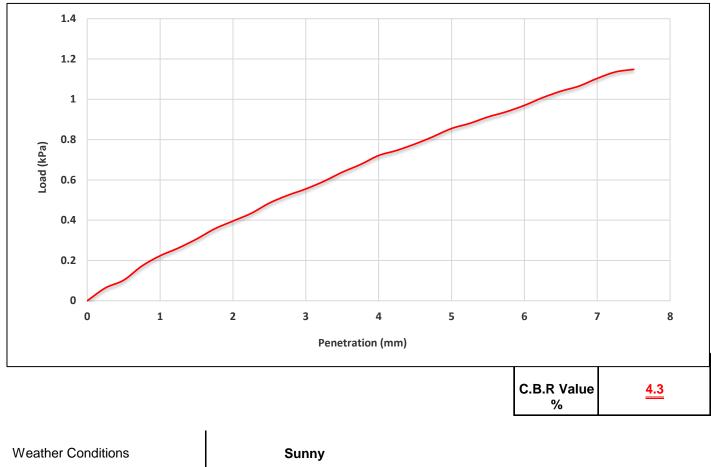
Surcharge (kg)	9
Material Above 20mm (est.)	N/A
Moisture Content (%)	23

Test Operator	Checked and	Authorised by	Paul Evans	9 P CHO	
Cearan Bryan	Date	11/01/2019	Faul Evalis	d' r branz	
					2788


CCTI			41505
GOIL	Determination of the Insitu California Bearing Ratio BS 1377: Part 9: 1990 Clause 4.3	Client Reference	14018549
Client	Arcadis	Test Date	09/01/2018
Site Location	Abermule CBR testing 4 days on site	Test Location	CBR 17
Sampling Method	BS 1377-1:1990 General requirements and sample preparation	Test Depth (m)	0.150
Soil Description	Brown fine to medium gravelly silty CLAY.	Kentledge Type	Back of 4x4

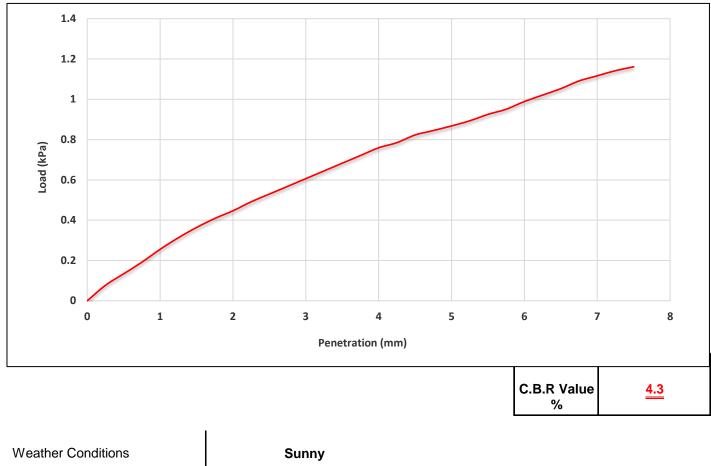
weather Conditions	Sunny
Surcharge (kg)	9
Material Above 20mm (est.)	N/A
Moisture Content (%)	26

Test Operator	Checked and	Authorised by	Paul Evans	9 P CHO	
Cearan Bryan	Date	11/01/2019	Faul Evalis	a r branzi	
					2788


CCTI		Contract Number	41505
GOIL	Determination of the Insitu California Bearing Ratio BS 1377: Part 9: 1990 Clause 4.3	Client Reference	14018549
Client	Arcadis	Test Date	09/01/2018
Site Location	Abermule CBR testing 4 days on site	Test Location	CBR 18
Sampling Method	BS 1377-1:1990 General requirements and sample preparation	Test Depth (m)	0.150
Soil Description	Brown fine to medium gravelly silty CLAY.	Kentledge Type	Back of 4x4

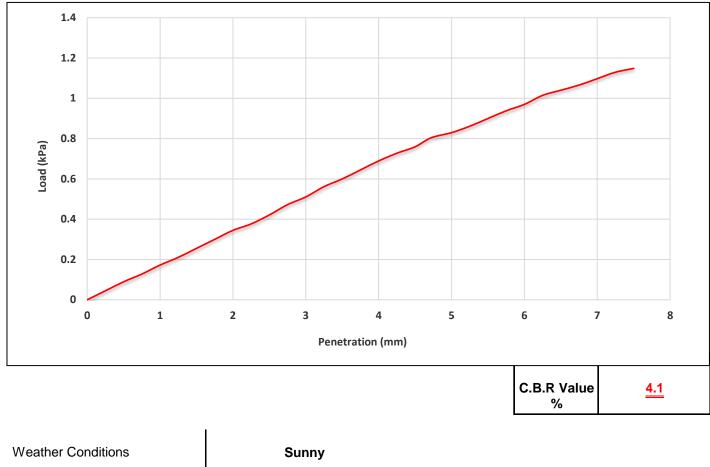
	Sunny
Surcharge (kg)	9
Material Above 20mm (est.)	N/A
Moisture Content (%)	23
	1

Test Operator	Checked and	Authorised by	Paul Evans	900-0	
Cearan Bryan	Date	11/01/2019	Paul Evans	a r branz	
					2788


CCTI		Contract Number	41505
GOIL	Determination of the Insitu California Bearing Ratio BS 1377: Part 9: 1990 Clause 4.3	Client Reference	14018549
Client	Arcadis	Test Date	09/01/2018
Site Location	Abermule CBR testing 4 days on site	Test Location	CBR 19
Sampling Method	BS 1377-1:1990 General requirements and sample preparation	Test Depth (m)	0.150
Soil Description	Brown fine to medium gravelly silty CLAY.	Kentledge Type	Back of 4x4

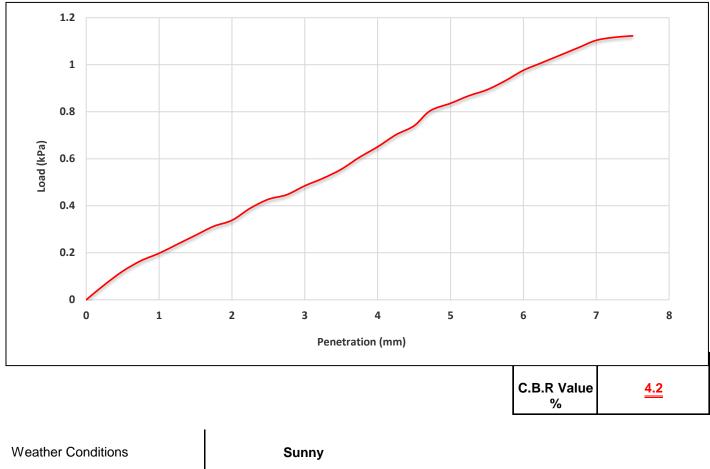
Weather Conditions	Sunny
Surcharge (kg)	9
Material Above 20mm (est.)	N/A
Moisture Content (%)	23
	1

Test Operator	Checked and	Authorised by	Paul Evans	900-0	
Cearan Bryan	Date	11/01/2019	Paul Evans	a r branz	
					2788


CCTI		Contract Number	41505
GOIL	Determination of the Insitu California Bearing Ratio BS 1377: Part 9: 1990 Clause 4.3	Client Reference	14018549
Client	Arcadis	Test Date	09/01/2018
Site Location	Abermule CBR testing 4 days on site	Test Location	CBR 20
Sampling Method	BS 1377-1:1990 General requirements and sample preparation	Test Depth (m)	0.150
Soil Description	Brown fine to medium gravelly silty CLAY.	Kentledge Type	Back of 4x4

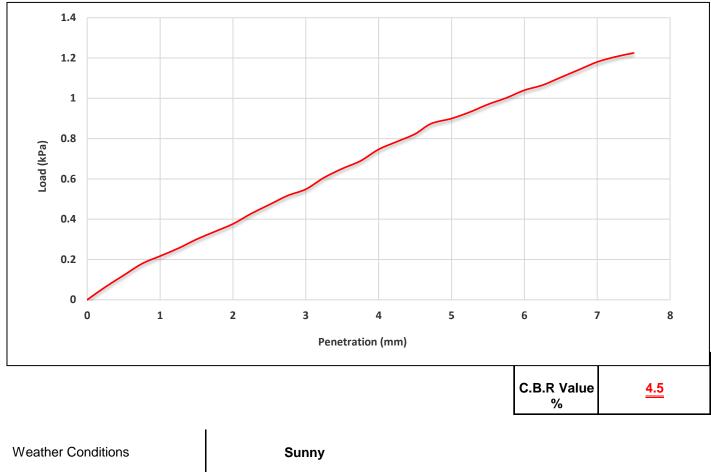
Weather Conditions	Sunny
Surcharge (kg)	9
Material Above 20mm (est.)	N/A
Moisture Content (%)	23

Test Operator	Checked and Authorised by		Paul Evans	9PC-0	
Cearan Bryan	Date	11/01/2019	Faul Evalis	d' r branz	
					2788


CCTI		Contract Number	41505
GOIL	Determination of the Insitu California Bearing Ratio BS 1377: Part 9: 1990 Clause 4.3	Client Reference	14018549
Client	Arcadis	Test Date	09/01/2018
Site Location	Abermule CBR testing 4 days on site	Test Location	CBR 22
Sampling Method	BS 1377-1:1990 General requirements and sample preparation	Test Depth (m)	0.150
Soil Description	Brown fine to medium gravelly silty CLAY.	Kentledge Type	Back of 4x4

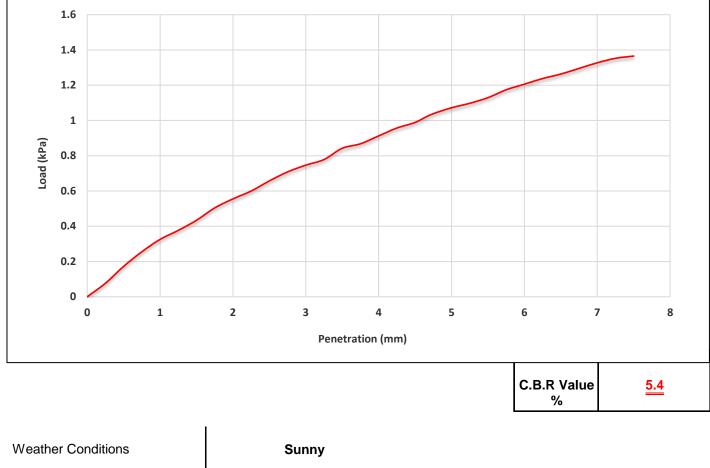
Surcharge (kg)	9
Material Above 20mm (est.)	N/A
Moisture Content (%)	22

Test Operator	Checked and Authorised by		Paul Evans	9PC-0	
Cearan Bryan	Date	11/01/2019	Faul Evalis	d' r branz	
					2788


CCTI	CCTI		41505
GOIL	Determination of the Insitu California Bearing Ratio BS 1377: Part 9: 1990 Clause 4.3	Client Reference	14018549
Client	Arcadis	Test Date	10/01/2018
Site Location	Abermule CBR testing 4 days on site	Test Location	CBR 23
Sampling Method	BS 1377-1:1990 General requirements and sample preparation	Test Depth (m)	0.150
Soil Description	Brown fine to medium gravelly silty CLAY.	Kentledge Type	Back of 4x4

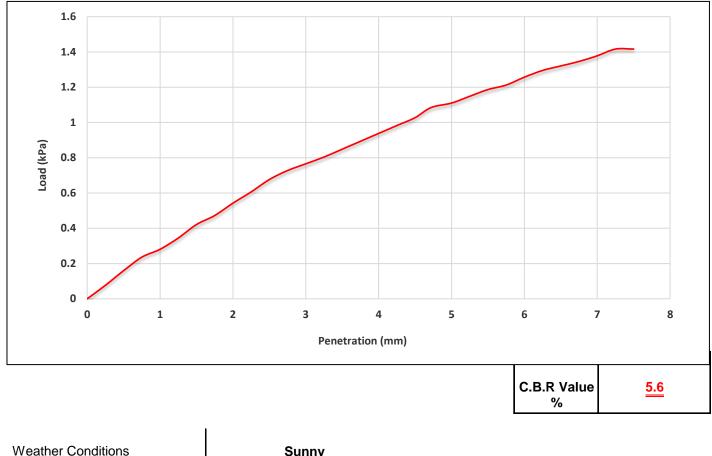
Surcharge (kg)	9
Material Above 20mm (est.)	N/A
Moisture Content (%)	24
	I

Test Operator	Checked and Authorised by		Paul Evans	9 P CLO	
Cearan Bryan	Date	11/01/2019	Faul Evalis	d' r branz	
					2788


CCTI	GSTL Determination of the Insitu California Bearing Ratio BS 1377: Part 9: 1990 Clause 4.3		41505
GOIL			14018549
Client	Arcadis	Test Date	10/01/2018
Site Location	Abermule CBR testing 4 days on site	Test Location	CBR 24
Sampling Method	BS 1377-1:1990 General requirements and sample preparation	Test Depth (m)	0.30
Soil Description	Brown fine to coarse gravelly silty CLAY.	Kentledge Type	Back of 4x4

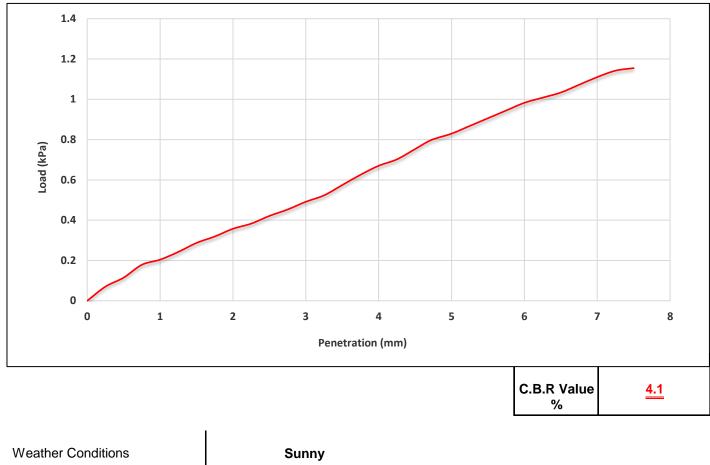
	,
Surcharge (kg)	9
Material Above 20mm (est.)	N/A
Moisture Content (%)	24
	l

Test Operator	Checked and Authorised by		Paul Evans	9 PCLO	
Cearan Bryan	Date	11/01/2019	Faul Evalis	a r branzi	
					2788


CCTI		Contract Number	41505
UDIL	Determination of the Insitu California Bearing Ratio BS 1377: Part 9: 1990 Clause 4.3		14018549
Client	Arcadis	Test Date	10/01/2018
Site Location	Abermule CBR testing 4 days on site	Test Location	CBR 25
Sampling Method	BS 1377-1:1990 General requirements and sample preparation	Test Depth (m)	0.80
Soil Description	Brown fine to medium gravelly silty CLAY.	Kentledge Type	Back of 4x4

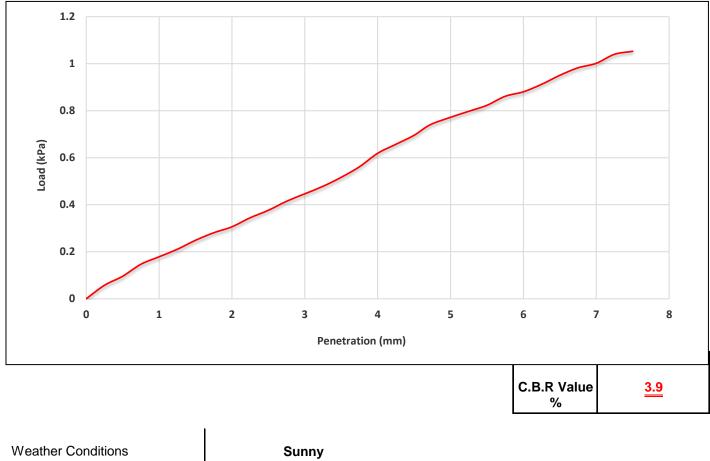
	Canny
Surcharge (kg)	9
Material Above 20mm (est.)	N/A
Moisture Content (%)	18

Test Operator	Checked and Authorised by		Paul Evans	9 PCLO	
Cearan Bryan	Date	11/01/2019	Faul Evalis	a r branzi	
					2788


CCTI		Contract Number	41505
GOIL	Determination of the Insitu California Bearing Ratio BS 1377: Part 9: 1990 Clause 4.3		14018549
Client	Arcadis	Test Date	10/01/2018
Site Location	Abermule CBR testing 4 days on site	Test Location	CBR 26
Sampling Method	BS 1377-1:1990 General requirements and sample preparation	Test Depth (m)	0.60
Soil Description	Brown fine to coarse gravelly silty CLAY.	Kentledge Type	Back of 4x4

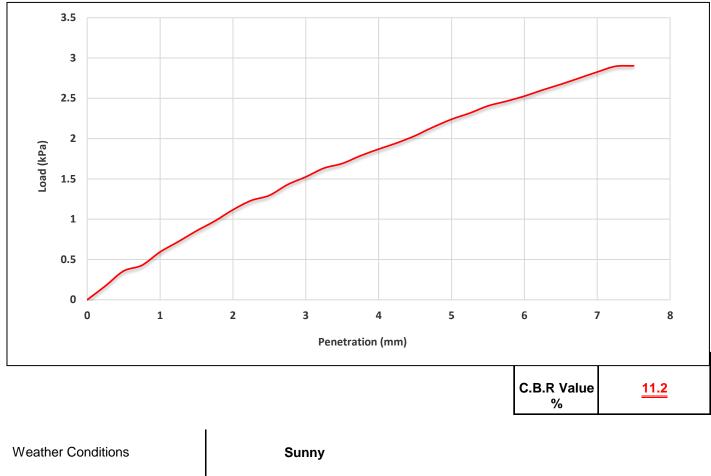
	Sunny
Surcharge (kg)	9
Material Above 20mm (est.)	N/A
Moisture Content (%)	23

Test Operator	Checked and Authorised by		Paul Evans	SPC.	
Cearan Bryan	Date	11/01/2019	Paul Evans	a r branz	
					2788


CCTI	2CTI		41505
GOIL	Determination of the Insitu California Bearing Ratio BS 1377: Part 9: 1990 Clause 4.3	Client Reference	14018549
Client	Arcadis	Test Date	10/01/2018
Site Location	Abermule CBR testing 4 days on site	Test Location	CBR 27
Sampling Method	BS 1377-1:1990 General requirements and sample preparation	Test Depth (m)	0.150
Soil Description	Brown fine to coarse gravelly silty CLAY.	Kentledge Type	Back of 4x4

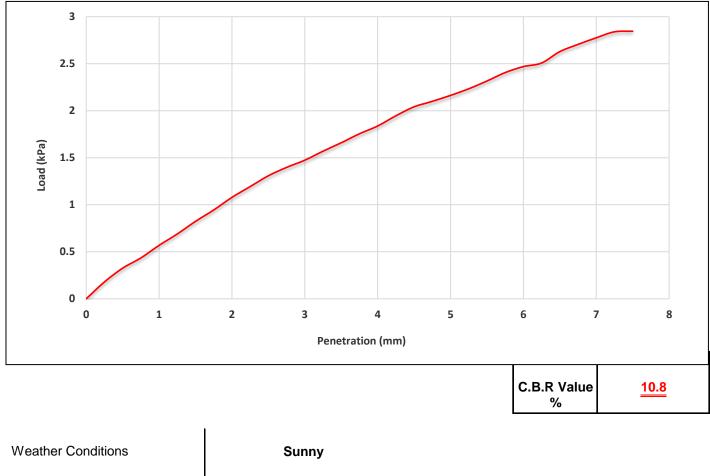
	Canny
Surcharge (kg)	9
Material Above 20mm (est.)	N/A
Moisture Content (%)	23

Test Operator	Checked and	Authorised by	Paul Evans	9 P CHO	
Cearan Bryan	Date	11/01/2019	Faul Evalis	d' r branz	
					2788


CCTI	CTI		41505
GOIL	Determination of the Insitu California Bearing Ratio BS 1377: Part 9: 1990 Clause 4.3	Client Reference	14018549
Client	Arcadis	Test Date	10/01/2018
Site Location	Abermule CBR testing 4 days on site	Test Location	CBR 28
Sampling Method	BS 1377-1:1990 General requirements and sample preparation	Test Depth (m)	0.150
Soil Description	Brown fine to coarse gravelly silty CLAY.	Kentledge Type	Back of 4x4

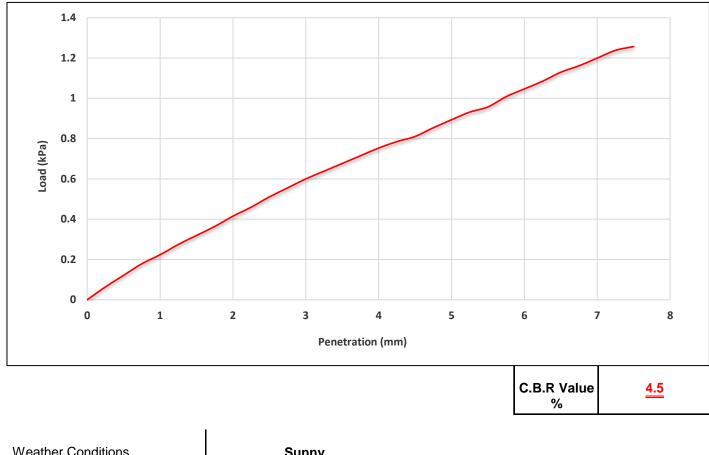
	cumy
Surcharge (kg)	9
Material Above 20mm (est.)	N/A
Moisture Content (%)	23

Test Operator	Checked and	Authorised by	Paul Evans	900-0	
Cearan Bryan	Date	11/01/2019	Faul Evalis	a r branzi	
					2788

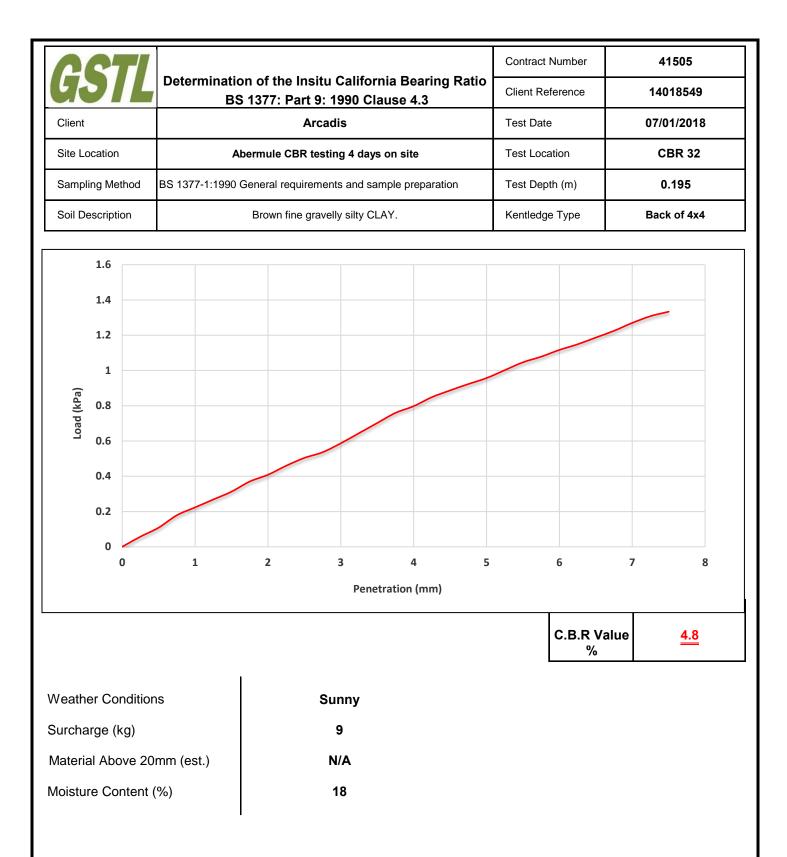

CCTI	CCTI		41505
GOIL	Determination of the Insitu California Bearing Ratio BS 1377: Part 9: 1990 Clause 4.3	Client Reference	14018549
Client	Arcadis	Test Date	10/01/2018
Site Location	Abermule CBR testing 4 days on site	Test Location	CBR 29
Sampling Method	BS 1377-1:1990 General requirements and sample preparation	Test Depth (m)	0.30
Soil Description	Brown fine to coarse gravelly silty CLAY.	Kentledge Type	Back of 4x4

	- - -
Surcharge (kg)	9
Material Above 20mm (est.)	N/A
Moisture Content (%)	14
]

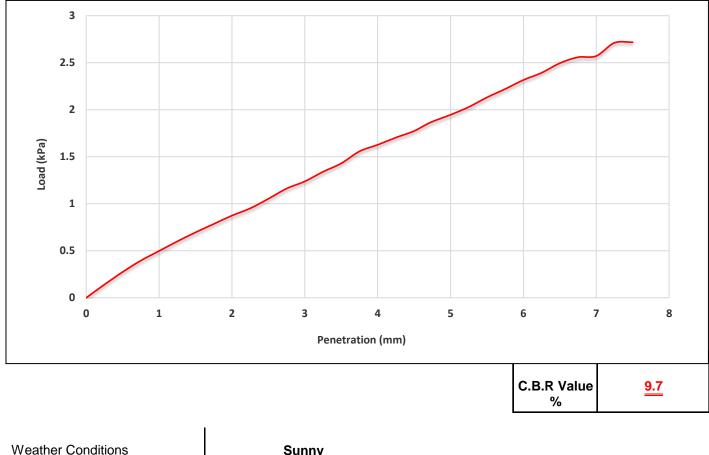
Test Operator	Checked and	Authorised by	Paul Evans	900-0	
Cearan Bryan	Date	11/01/2019	Faul Evalis	a r branzi	
					2788


CCTI	CCTI		41505
GOIL	Determination of the Insitu California Bearing Ratio BS 1377: Part 9: 1990 Clause 4.3	Client Reference	14018549
Client	Arcadis	Test Date	10/01/2018
Site Location	Abermule CBR testing 4 days on site	Test Location	CBR 30
Sampling Method	BS 1377-1:1990 General requirements and sample preparation	Test Depth (m)	0.78
Soil Description	Brown fine to coarse gravelly silty CLAY.	Kentledge Type	Back of 4x4

Surcharge (kg)	9
Material Above 20mm (est.)	N/A
Moisture Content (%)	14

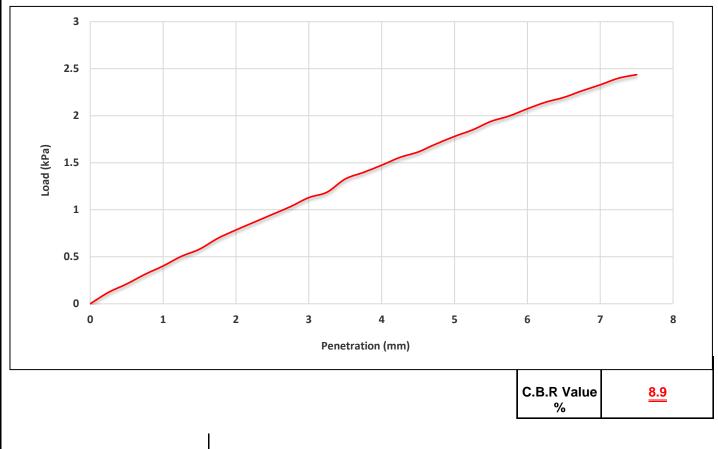

Test Operator	Checked and	Authorised by	Paul Evans	900-0	
Cearan Bryan	Date	11/01/2019	Faul Evalis	a r branzi	
					2788

CCTI		Contract Number	41505
UDIL	Determination of the Insitu California Bearing Ratio BS 1377: Part 9: 1990 Clause 4.3		14018549
Client	Arcadis	Test Date	07/01/2018
Site Location	Abermule CBR testing 4 days on site	Test Location	CBR 31
Sampling Method	BS 1377-1:1990 General requirements and sample preparation	Test Depth (m)	0.15
Soil Description	Brown fine gravelly silty CLAY.	Kentledge Type	Back of 4x4

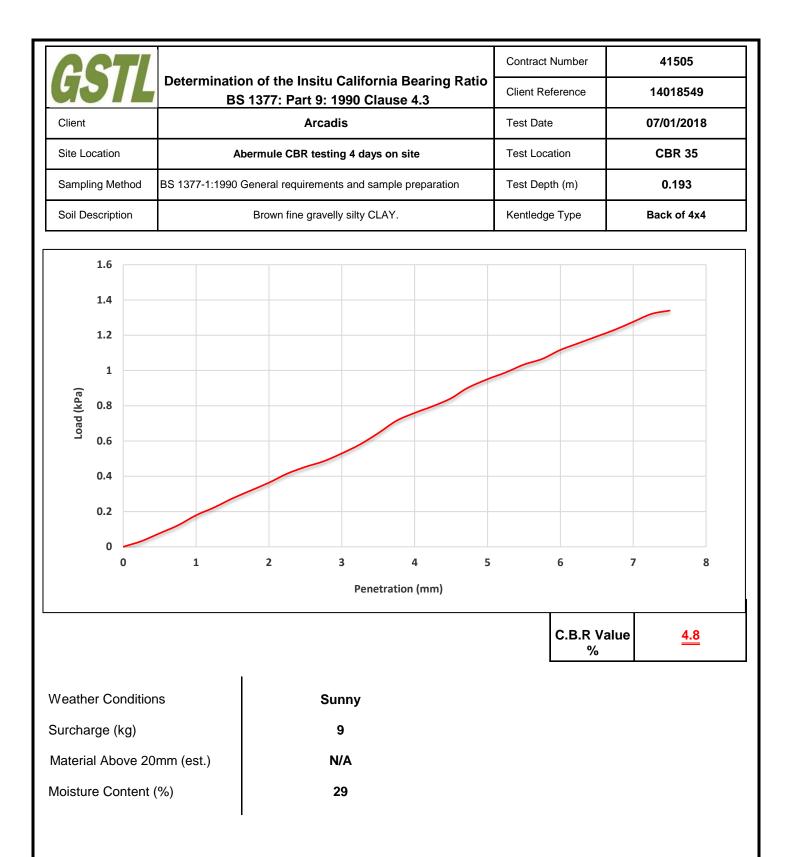

Weather Conditions	Sunny
Surcharge (kg)	9
Material Above 20mm (est.)	N/A
Moisture Content (%)	23
	I

Test Operator	Checked and	Authorised by	Paul Evans	9 P CHO	
Cearan Bryan	Date	11/01/2019	Faul Evalis	d' r branz	
					2788

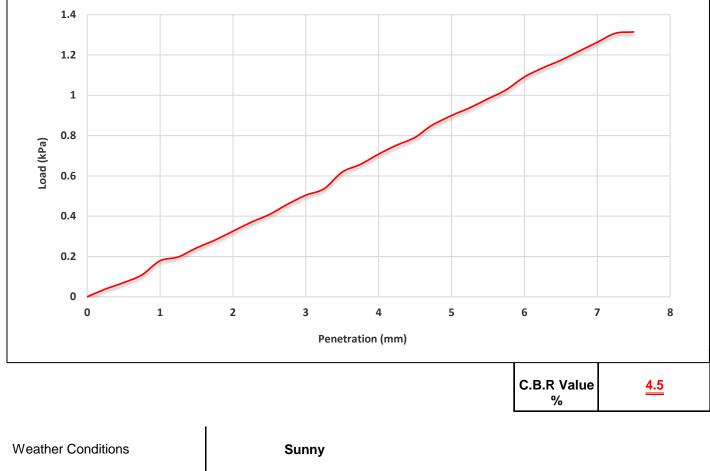
Test Operator	Checked and	Authorised by	Paul Evans	900-0	
Cearan Bryan	Date	11/01/2019	Paul Evans	a) r bianz	
					2788


CCTI		Contract Number	41505
GOIL	Determination of the Insitu California Bearing Ratio BS 1377: Part 9: 1990 Clause 4.3	Client Reference	14018549
Client	Arcadis	Test Date	07/01/2018
Site Location	Abermule CBR testing 4 days on site	Test Location	CBR 33
Sampling Method	BS 1377-1:1990 General requirements and sample preparation	Test Depth (m)	0.40
Soil Description	Brown fine gravelly silty CLAY.	Kentledge Type	Back of 4x4

weather Conditions	Sunny
Surcharge (kg)	9
Material Above 20mm (est.)	N/A
Moisture Content (%)	16

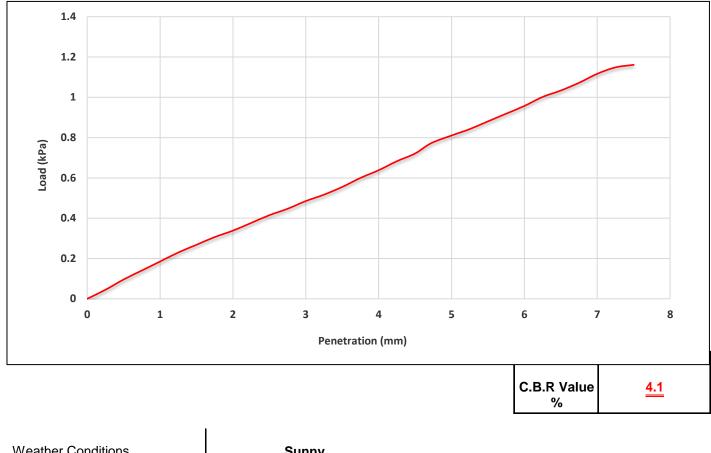

Test Operator	Checked and	Authorised by	Paul Evans	980-0	
Cearan Bryan	Date	11/01/2019	Paul Evans	a r branz	
					2788

CCTI		Contract Number	41505
GOIL	Determination of the Insitu California Bearing Ratio BS 1377: Part 9: 1990 Clause 4.3	Client Reference	14018549
Client	Arcadis	Test Date	07/01/2018
Site Location	Abermule CBR testing 4 days on site	Test Location	CBR 34
Sampling Method	BS 1377-1:1990 General requirements and sample preparation	Test Depth (m)	0.38
Soil Description	Brown fine gravelly silty CLAY.	Kentledge Type	Back of 4x4


Weather Conditions	Sunny
Surcharge (kg)	9
Material Above 20mm (est.)	N/A
Moisture Content (%)	18

Те	est Operator	Checked and	Authorised by	Paul Evans	900-0	
Ce	earan Bryan	Date	11/01/2019	Faul Evalis	a r branzi	
						2788

Test Operator	Checked and	Authorised by	Paul Evans	9PC-0	
Cearan Bryan	Date	11/01/2019	Paul Evans	a) r Wanz	
					2788

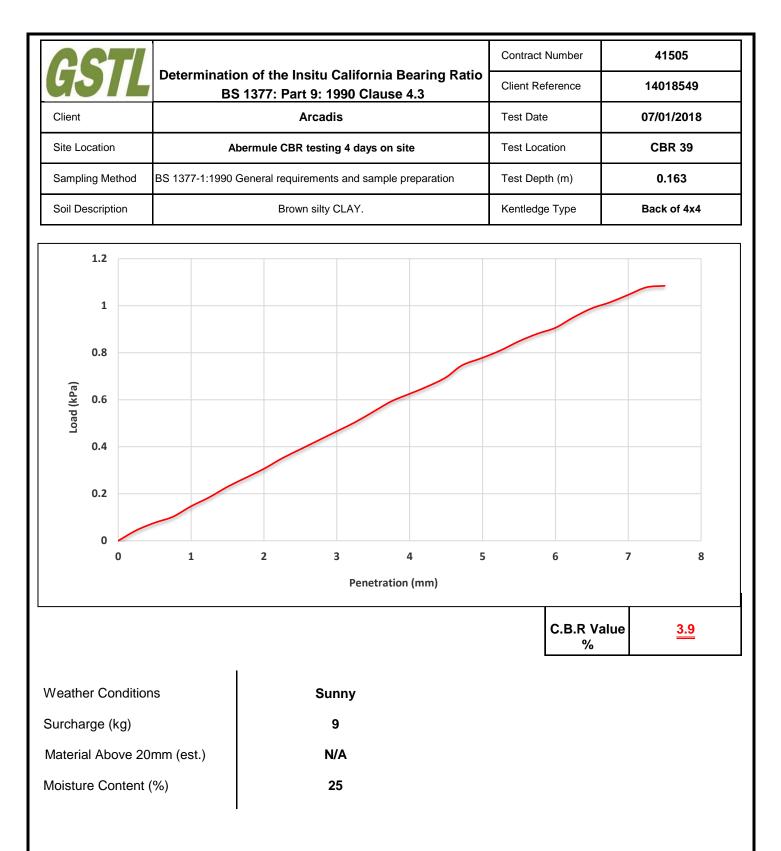

CCTI		Contract Number	41505
Determination of the Insitu California Bearing Ratio BS 1377: Part 9: 1990 Clause 4.3		Client Reference	14018549
Client	Arcadis	Test Date	07/01/2018
Site Location	Abermule CBR testing 4 days on site	Test Location	CBR 36
Sampling Method	BS 1377-1:1990 General requirements and sample preparation	Test Depth (m)	0.15
Soil Description	Brown fine gravelly silty CLAY.	Kentledge Type	Back of 4x4

Surcharge (kg)	9
Material Above 20mm (est.)	N/A
Moisture Content (%)	25

Test Operator	Checked and	Authorised by	Paul Evans	9 P CHO	
Cearan Bryan	Date	11/01/2019	Faul Evalis	d' r branz	
					2788

CCTI			41505
GOIL	Determination of the Insitu California Bearing Ratio BS 1377: Part 9: 1990 Clause 4.3	Client Reference	14018549
Client	Arcadis	Test Date	07/01/2018
Site Location	Abermule CBR testing 4 days on site	Test Location	CBR 37
Sampling Method	BS 1377-1:1990 General requirements and sample preparation	Test Depth (m)	0.15
Soil Description	Brown fine gravelly silty CLAY.	Kentledge Type	Back of 4x4

Weather Conditions	Sunny
Surcharge (kg)	9
Material Above 20mm (est.)	N/A
Moisture Content (%)	27

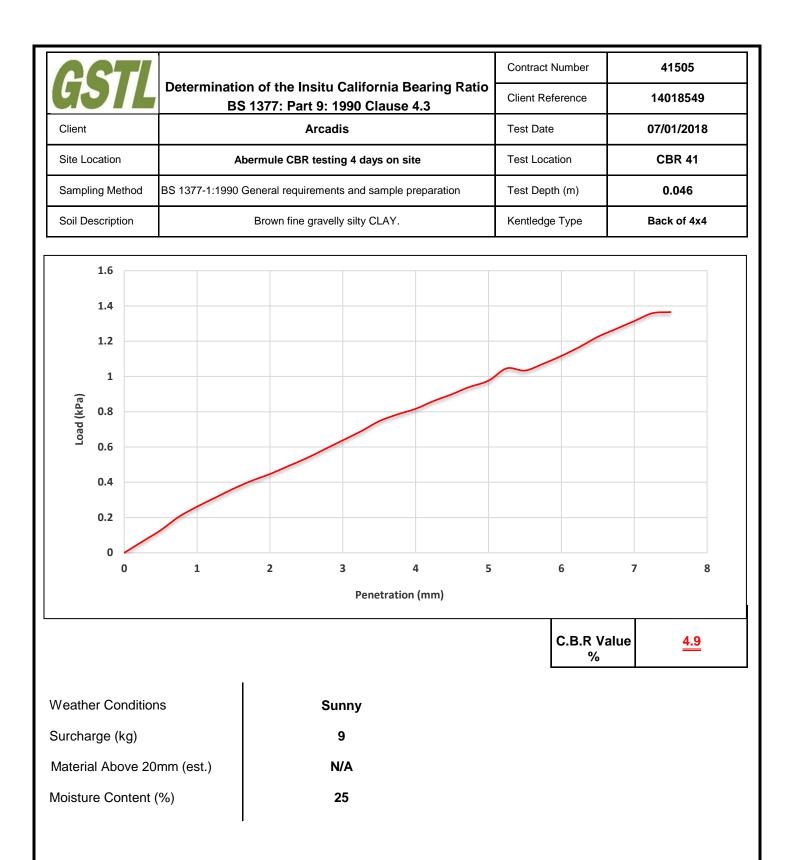

Test Operator	Checked and	Authorised by	Paul Evans	980-0	
Cearan Bryan	Date	11/01/2019	Paul Evans	a r branz	
					2788

GSTL		on of the Insitu California Bea		Contract N		41505 14018549
Client	B	BS 1377: Part 9: 1990 Clause 4.3 Arcadis		Test Date		07/01/2018
Site Location	A	bermule CBR testing 4 days on site		Test Locat	ion	CBR 38
Sampling Method	BS 1377-1:1990	General requirements and sample prep	aration	Test Depth	ı (m)	0.15
Soil Description			Kentledge	Туре	Back of 4x4	
1.2						
1						
0.8						
(Pa)						
9.0 ead (kPa)						
0.4						
0.2						
0						
0	1	2 3 4 Penetration (m	5 1m)		6 7	8
				•	C.B.R Value %	<u>4.1</u>
Veather Condition	าร	Sunny				
Surcharge (kg)		9				
Material Above 20)mm (est.)	N/A				
Noisture Content	(%)	26				

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory.

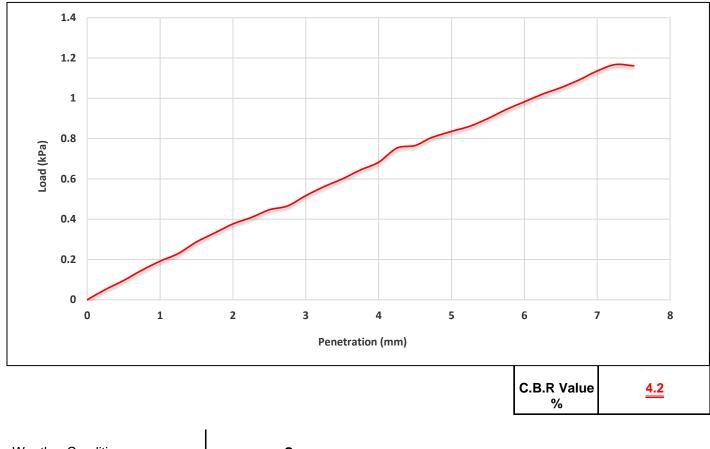
Test Operator	Checked and	Authorised by	Paul Evans	900-0	
Cearan Bryan	Date	11/01/2019	Paul Evans	a r branz	
					2788

¢

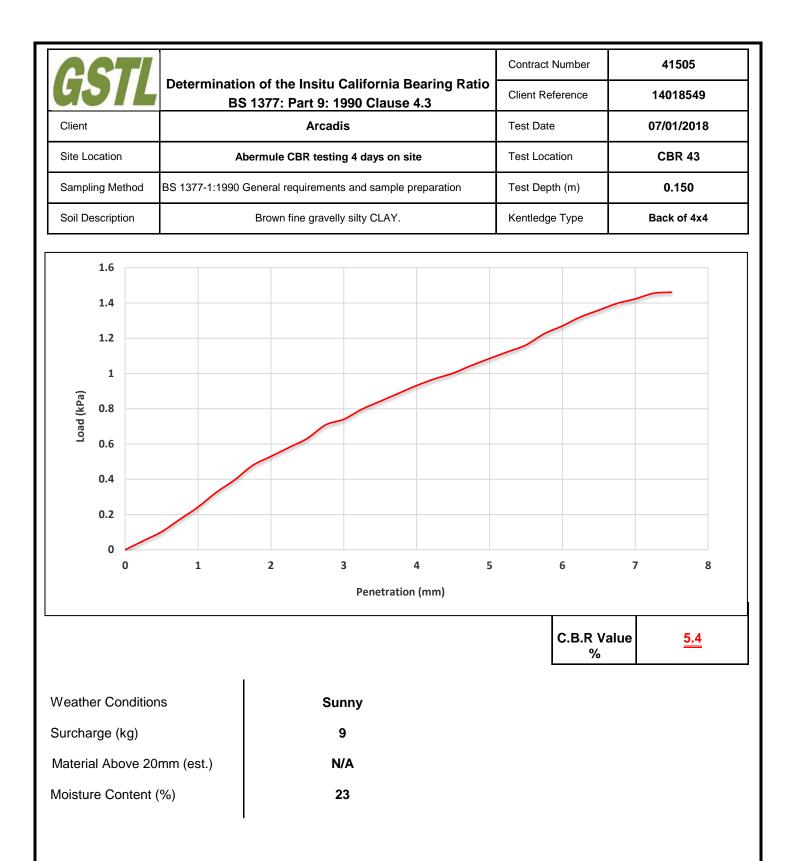

Test Operator	Checked and	Authorised by	Paul Evans	9000	
Cearan Bryan	Date	11/01/2019	Paul Evans	a r branz	
					2788

GSTI	Determinatio	n of the Insitu California Bearing F	atio	ract Number	41505	
	BS	Arcadis Test Date		t Reference	14018549	
Client					07/01/2018	
Site Location		permule CBR testing 4 days on site			CBR 40	
Sampling Method	BS 1377-1:1990 (General requirements and sample preparation	Test	Depth (m)	0.20	
Soil Description	escription Brown silty CLAY.		Kentl	edge Type	Back of 4x4	
2						
1.8						
1.6						
1.4						
1.2						
ad (
_						
0.6						
0.4						
0.2						
0	1	2 3 4	5	6 7	8	
		Penetration (mm)				
				C.B.R Value %	<u>7.1</u>	
	I					
	5	Sunny				
Veather Conditions		•				
		9				
Veather Conditions Surcharge (kg) Material Above 20r	nm (est.)	y N/A				

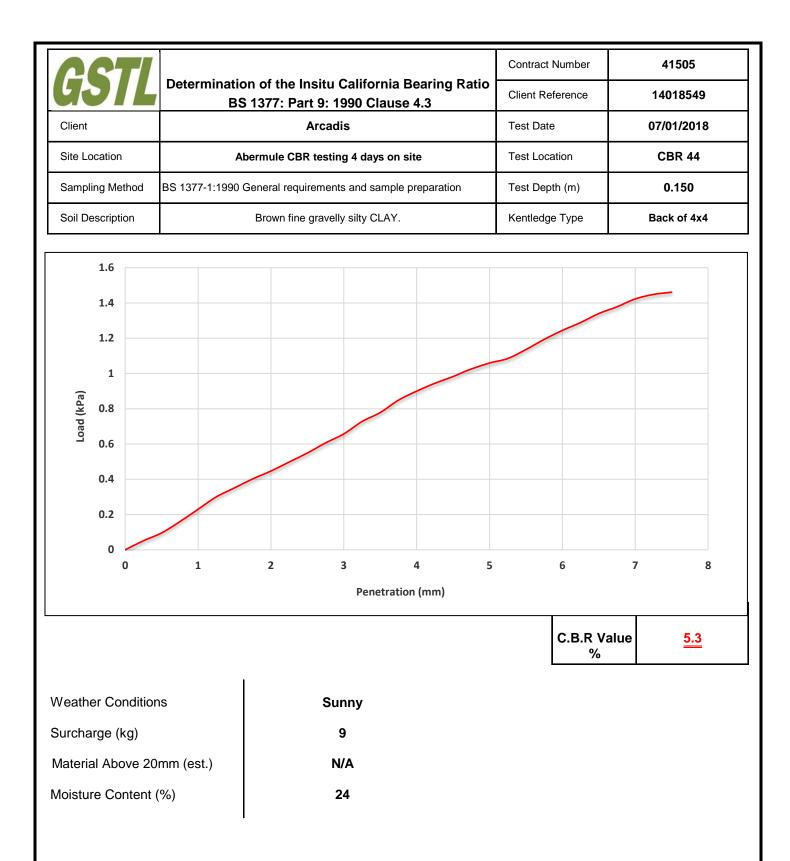
This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory.


Test Operator	Checked and	Authorised by	Paul Evans	900-0	
Cearan Bryan	Date	11/01/2019	Paul Evans	a r branz	
					2788

¢


Test Operator	Checked and	Authorised by	Paul Evans	9PC-0	
Cearan Bryan	Date	11/01/2019	Paul Evans	a) r Wanz	
					2788

CCTI		Contract Number	41505
GOIL	Determination of the Insitu California Bearing Ratio BS 1377: Part 9: 1990 Clause 4.3	Client Reference	14018549
Client	Arcadis	Test Date	07/01/2018
Site Location	Abermule CBR testing 4 days on site	Test Location	CBR 42
Sampling Method	BS 1377-1:1990 General requirements and sample preparation	Test Depth (m)	0.170
Soil Description	Brown fine gravelly silty CLAY.	Kentledge Type	Back of 4x4



Weather Conditions	Sunny
Surcharge (kg)	9
Material Above 20mm (est.)	N/A
Moisture Content (%)	25

Test Operator	Checked and	Authorised by	Paul Evans	980-0	
Cearan Bryan	Date	11/01/2019	Paul Evans	a r branz	
					2788

Test Operator	Checked and	Authorised by	Paul Evans	9PC-0	
Cearan Bryan	Date	11/01/2019	Paul Evans	a) r Wanz	
					2788

Test Operator	Checked and	Authorised by	Paul Evans	980-0	
Cearan Bryan	Date	11/01/2019	Paul Evans	d'r blanz	
					2788

Qty

Contract Number: 42716

Report Date: 18-02-2019

Client Ref: 10026414 Client PO: 14020727

Laboratory Report

> Client Arcadis Fortran Rd St Mellons Cardiff CF3 0EY

Contract Title: Abermule Business Park For the attention of: Ross Scammell

Date Received: **31-01-2019** Date Commenced: **31-01-2019** Date Completed: **18-02-2019**

Test Description

Moisture Content	12
BS 1377:1990 - Part 2 : 3.2 - * UKAS	
4 Point Liquid & Plastic Limit	12
BS 1377:1990 - Part 2 : 4.3 & 5.3 - * UKAS	
Particle Density (Gas Jar)	2
BS 1377:1990 - Part 2 : 8.2 - * UKAS	
PSD Wet Sieve method	14
BS 1377:1990 - Part 2 : 9.2 - * UKAS	
PSD: Sedimentation by pipette carried out separately	1
BS 1377:1990 - Part 2 : 9.4 - * UKAS	
Organic Matter Content-dichromate method	1
BS 1377:1990 - Part 3 : 3 - @ Non Accredited Test	

Notes: Observations and Interpretations are outside the UKAS Accreditation

* - denotes test included in laboratory scope of accreditation

- denotes test carried out by approved contractor

@ - denotes non accredited tests

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved Signatories:

Ben Sharp (Contracts Manager) - Emma Sharp (Office Manager) - Paul Evans (Quality/Technical Manager)

Richard John (Advanced Testing Manager) - Sean Penn (Administrative/Accounts Assistant) - Wayne Honey (Administrative/Quality Assistant)

GEO Site & Testing Services Ltd Unit 3-4, Heol Aur, Dafen Ind Estate, Dafen, Llanelli, Carmarthenshire SA14 8QN Tel: 01554 784040 Fax: 01554 784041 info@gstl.co.uk gstl.co.uk

1

Contract Number: 42716

Test Description	Qty
BRE Full Suite includes pH, water & acid soluble sulphate, total sulphur, magnesium, chloride and nitrate BRE - BR279 - @ Non Accredited Test	9
Dry Den/MC (2.5kg Rammer Method 1 Litre Mould) BS 1377:1990 - Part 4 : 3.3 - * UKAS	7

Disposal of samples for job

Notes: Observations and Interpretations are outside the UKAS Accreditation

- * denotes test included in laboratory scope of accreditation
- # denotes test carried out by approved contractor
- @ denotes non accredited tests

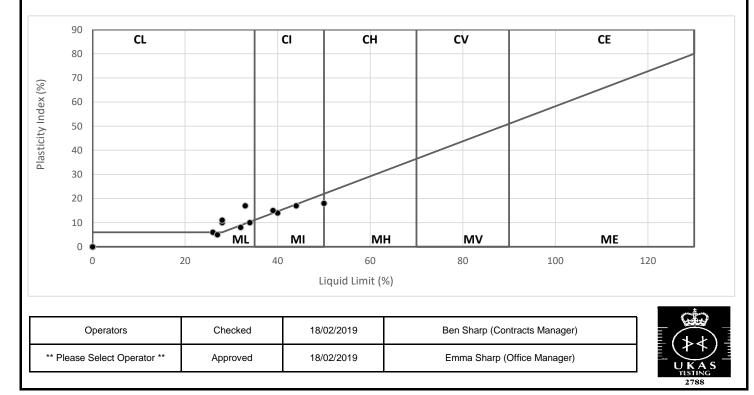
This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

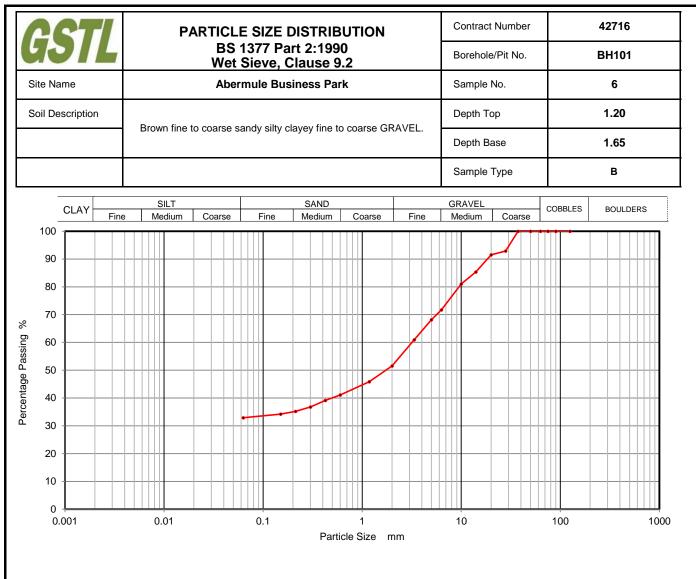
Approved Signatories:

Ben Sharp (Contracts Manager) - Emma Sharp (Office Manager) - Paul Evans (Quality/Technical Manager) Richard John (Advanced Testing Manager) - Sean Penn (Administrative/Accounts Assistant) - Wayne Honey (Administrative/Quality Assistant)

GS	TL	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5) DESCRIPTIONS					
Contract Number						42716	
Site Name				ule Business Park			
Sample/Hole Reference	Sample Number	Sample Type	D	epth (i	m)	Descriptions	
BH103	5	D	1.20	-	1.65	Brown fine to coarse gravelly sandy silty CLAY.	
BH103	7	D	2.00	-	2.45	Grey silty CLAY.	
BH103	9	D	3.00	-	3.45	Brown silty clayey fine to coarse sandy GRAVEL.	
BH104	5	D	1.20	-	1.65	Brown fine to coarse gravelly sandy silty CLAY.	
BH105	4	В	0.50	-	1.20	Brown fine to coarse gravelly sandy silty CLAY.	
SA05	5	D	0.50	-	0.70	Brown fine to medium gravelly sandy silty CLAY.	
SA07	5	В	0.30	-	0.50	Brown fine to medium gravelly sandy silty CLAY.	
SA08	5	D	0.50	-	0.70	Brown fine to medium gravelly sandy silty CLAY.	
SA12	4	D	0.50	-	0.70	Brown fine to coarse gravelly sandy silty CLAY.	
SA15	5	D	0.30	-	0.50	Brown fine to medium gravelly sandy silty CLAY.	
SA14	4	D	0.40	-	0.60	Brown fine to medium gravelly sandy silty CLAY.	
TP101	4	D	0.20	-	0.40	Brown fine to medium gravelly sandy silty CLAY.	
				-			
	1			-	1		

Operators	Checked	18/02/2019	Ben Sharp (Contracts Manager)
** Please Select Operator **	Approved	18/02/2019	Emma Sharp (Office Manager)

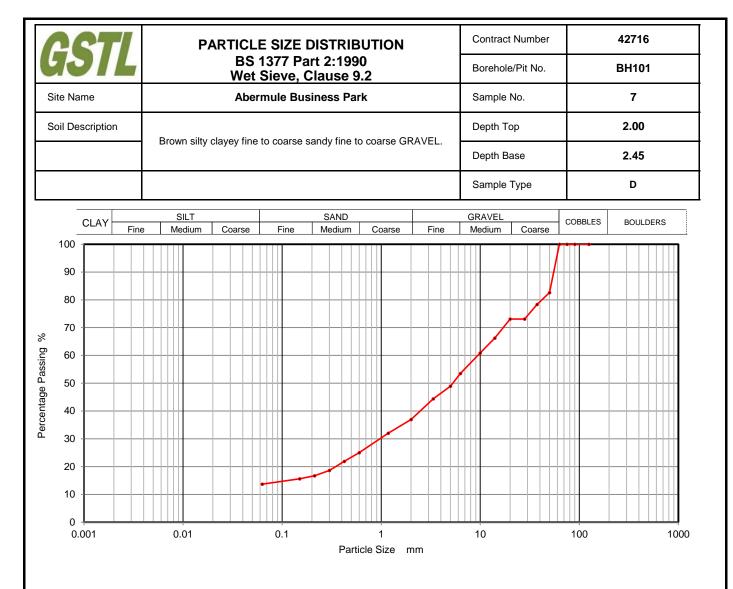

G	STL	LIQUID LIMIT (B
Contract Nu	mber	


IQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5)

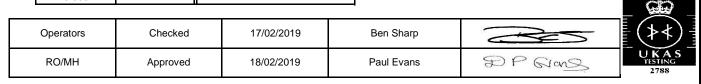
Contract Number	42716	
Site Name	Abermule Business Park	
	•	

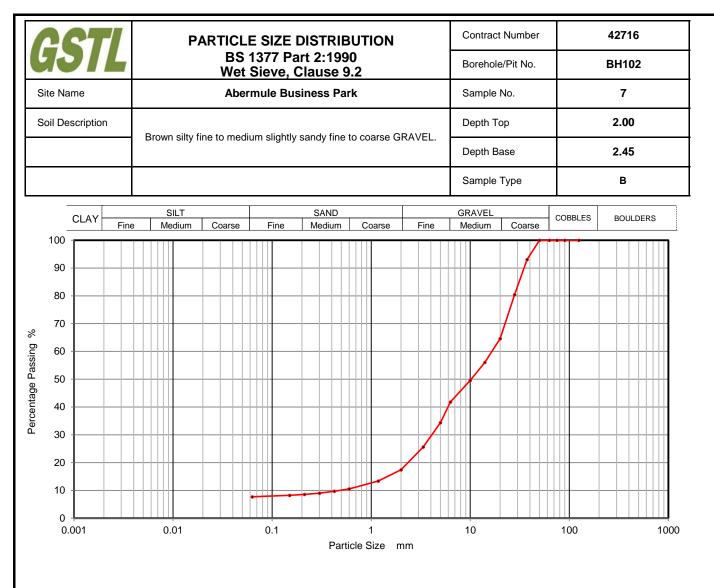
Sample/Hole Reference	Sample Number	Sample Type	D	epth (ı	n)	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity index %	Passing 0.425mm %	Remarks
BH103	5	D	1.20	-	1.65	17	32	24	8	100	ML Low Plasticity
BH103	7	D	2.00	-	2.45	4.8		NP		54	
BH103	9	D	3.00	-	3.45	11	33	16	17	42	CL Low Plasticity
BH104	5	D	1.20	-	1.65	21	40	26	14	79	MI Intermediate Plasticity
BH105	4	В	0.50	-	1.20	27	44	27	17	82	MI Intermediate Plasticity
SA05	5	D	0.50	-	0.70	28	50	32	18	82	MI/H Inter/High Plasticity
SA07	5	В	0.30	-	0.50	20	28	18	10	84	CL Low Plasticity
SA08	5	D	0.50	-	0.70	21	34	24	10	87	ML Low Plasticity
SA12	4	D	0.50	-	0.70	25	39	24	15	77	CI Intermediate Plasticity
SA15	5	D	0.30	-	0.50	18	28	17	11	80	CL Low Plasticity
SA14	4	D	0.40	-	0.60	16	26	20	6	76	M/CL Low Plasticity
TP101	4	D	0.20	-	0.40	22	27	22	5	64	ML Low Plasticity
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
ymbols: NP : Non	Plastic	# : Liquid Li				/ed R CASAGR		ASSIFICA	TION		

BS 5930:1999+A2:2010

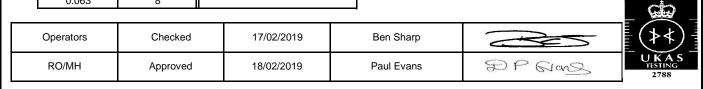


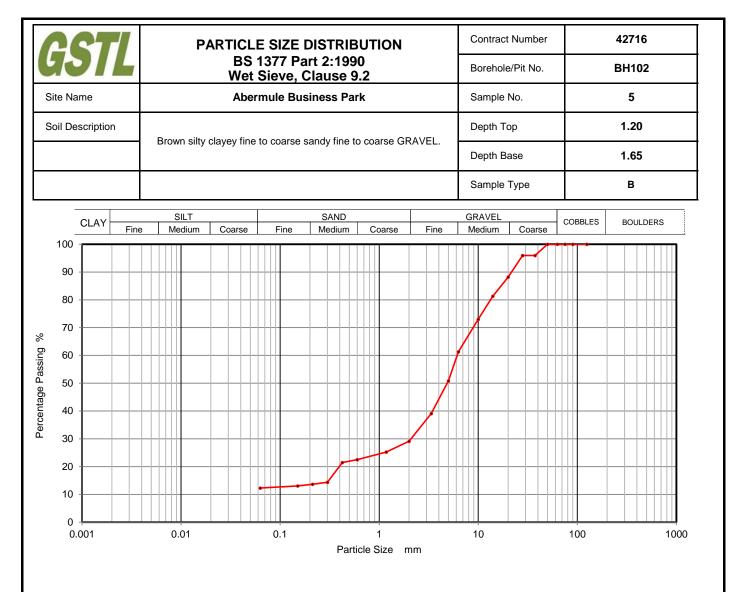
Sievi	ng	Sedime	ntation
article Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	93		
20	92		
14	85		
10	81		
6.3	72		
5	68		
3.35	61		
2	52		
1.18	46		
0.6	41		
0.425	39		
0.3	37		
0.212	35		
0.15	34	1	
0.063	33	71	


Sample Proportions	% dry mass
Cobbles	0
Gravel	48
Sand	19
Silt and Clay	33

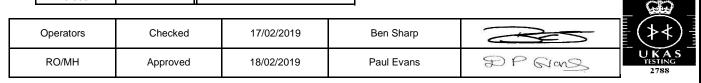

0.000	1 11				
Operators	Checked	17/02/2019	Ben Sharp		(≯≮)
RO/MH	Approved	18/02/2019	Paul Evans	DP Grans	UKAS TESTING 2788
	•				

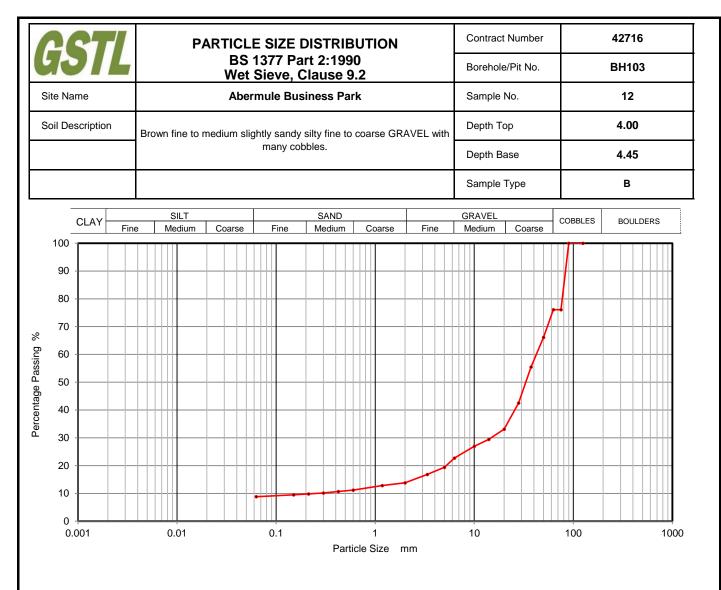
Sieving		Sedimer	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	83		
37.5	78		
28	73		
20	73		
14	66		
10	61		
6.3	54		
5	49		
3.35	44		
2	37		
1.18	32		
0.6	25		
0.425	22		
0.3	19		
0.212	17		
0.15	16		
0.063	14		


Sample Proportions	% dry mass
Cobbles	0
Gravel	63
Sand	23
Silt and Clay	14

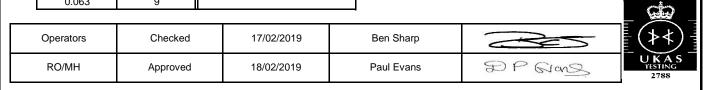


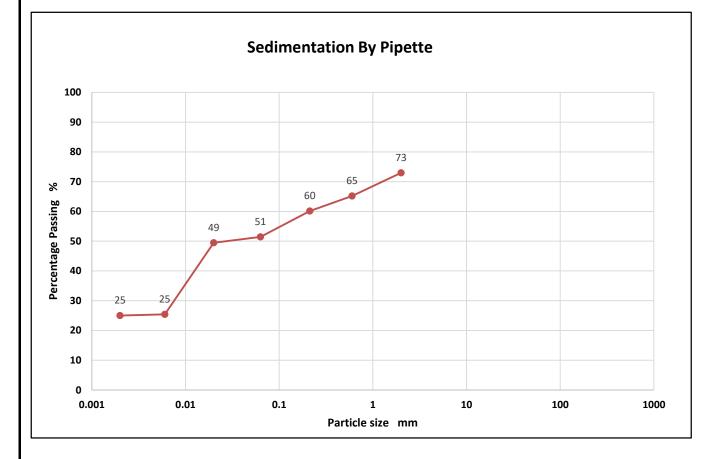
Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	93		
28	80		
20	65		
14	56		
10	50		
6.3	42		
5	34		
3.35	26		
2	17		
1.18	13		
0.6	11		
0.425	10		
0.3	9		
0.212	9		
0.15	8		
0.063	8		


Sample Proportions	% dry mass
Cobbles	0
Gravel	83
Sand	9
Silt and Clay	8



Sieving		Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	96		
28	96		
20	88		
14	81		
10	73		
6.3	61		
5	51		
3.35	39		
2	29		
1.18	25		
0.6	22		
0.425	21		
0.3	14		
0.212	14		
0.15	13		
0.063	12	1	


Sample Proportions	% dry mass
Cobbles	0
Gravel	71
Sand	17
Silt and Clay	12

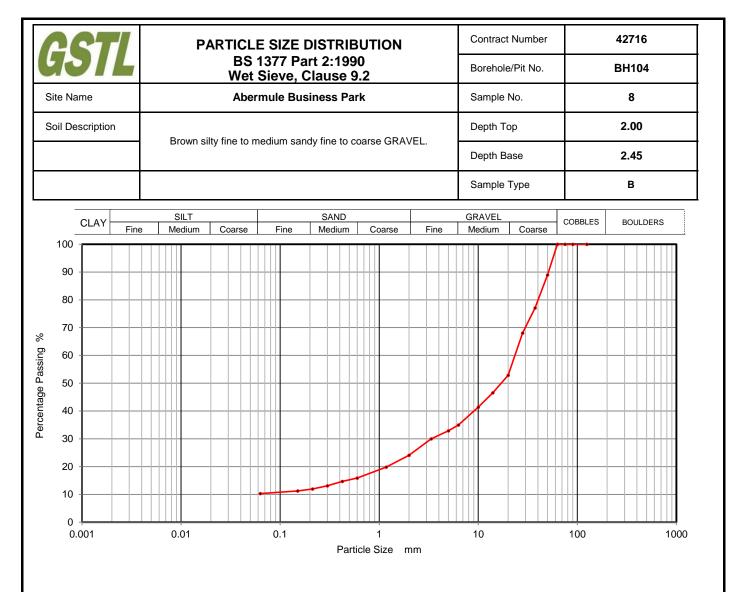


Sieving		Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	76		
63	76		
50	66		
37.5	55		
28	43		
20	33		
14	29		
10	27		
6.3	23		
5	19		
3.35	17		
2	14		
1.18	13		
0.6	11		
0.425	11		
0.3	10		
0.212	10	1	
0.15	9	1	
0.063	9	1	

Sample Proportions	% dry mass
Cobbles	24
Gravel	62
Sand	5
Silt and Clay	9

CCTI	Sedimentation By Pipette Analyisis	Contract Number	42716
GOIL	BS 1377 Part 2:1990 Clause 9.4	Borehole/Pit No.	BH103
Site Name	Abermule Business Park	Sample No.	9
Soil Description	Prown condy alovey silty CPAV/EL	Depth Top	3.00
	Brown sandy clayey silty GRAVEL.	Depth Base	3.45
		Sample Type	D

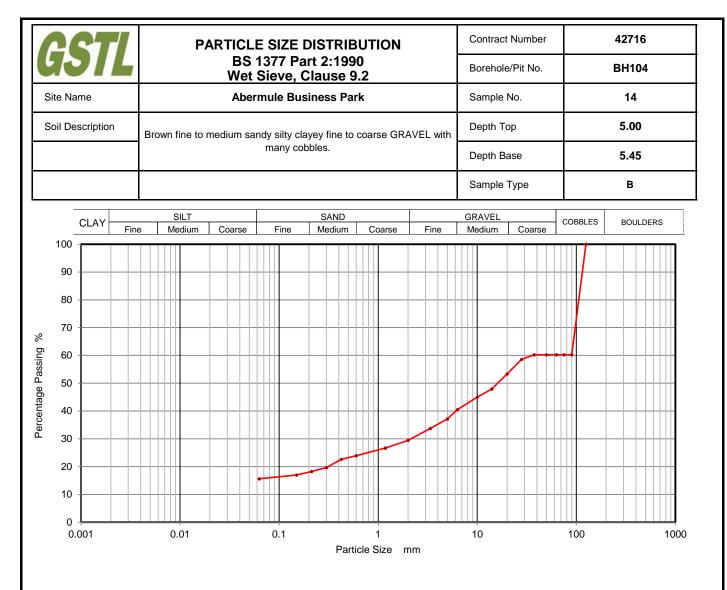
Top Sieve Analysis


BS Test Sieve	Percentage Passing
2.00	73
0.60	65
0.212	60
0.063	51

Particle Diameter	Percentage Passing	
0.02	49	
0.006	25	
0.002	25	

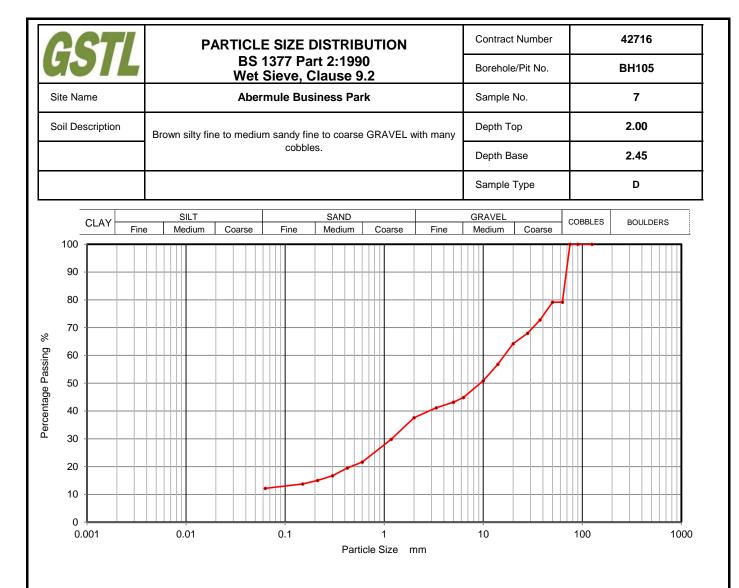
Sedimentation Analysis

Soil Fraction	Total Percentage		
Gravel	27		
Sand	22		
Silt	26		
Clay	25		

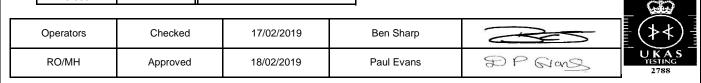

Operators	Checked	17/02/2019	Ben Sharp	20	
RO	Approved	18/02/2019	Paul Evans	DP Grans	
					2788

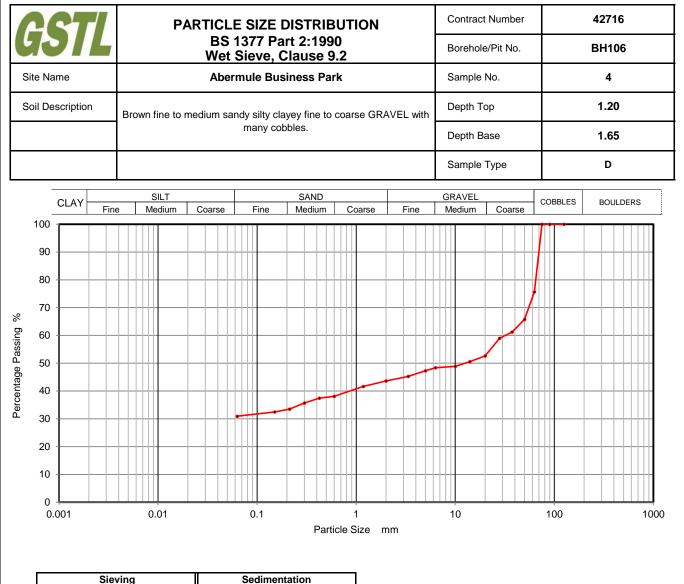
Sieving		Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	89		
37.5	77		
28	68		
20	53		
14	47		
10	41		
6.3	35		
5	33		
3.35	30		
2	24		
1.18	20		
0.6	16		
0.425	15		
0.3	13		
0.212	12		
0.15	11		
0.063	10	1	

Sample Proportions	% dry mass
Cobbles	0
Gravel	76
Sand	14
Silt and Clay	10


Operators	Checked	17/02/2019	Ben Sharp	RE	(≯≮)
RO/MH	Approved	18/02/2019	Paul Evans	\$P & Grans	UKAS TESTING 2788

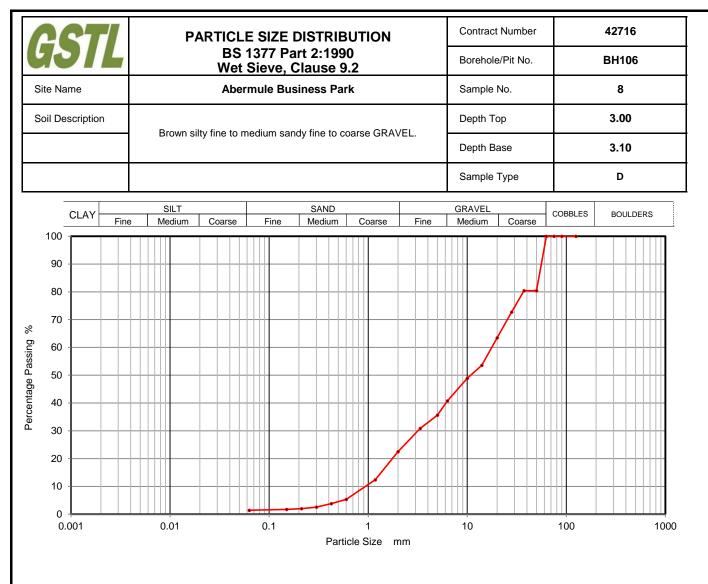
Sieving		Sedimer	Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100			
90	60			
75	60			
63	60			
50	60			
37.5	60			
28	59			
20	53			
14	48			
10	45			
6.3	41			
5	37			
3.35	34			
2	29			
1.18	27			
0.6	24			
0.425	23	1		
0.3	20			
0.212	18	1		
0.15	17	1		
0.063	16			


Sample Proportions	% dry mass
Cobbles	40
Gravel	31
Sand	13
Silt and Clay	16



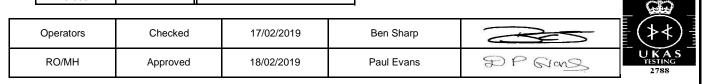
Sieving		Sedimer	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	79		
50	79		
37.5	73		
28	68		
20	64		
14	57		
10	51		
6.3	45		
5	43		
3.35	41		
2	38		
1.18	30		
0.6	22		
0.425	19		
0.3	17		
0.212	15	1	
0.15	14	1	
0.063	12	1	

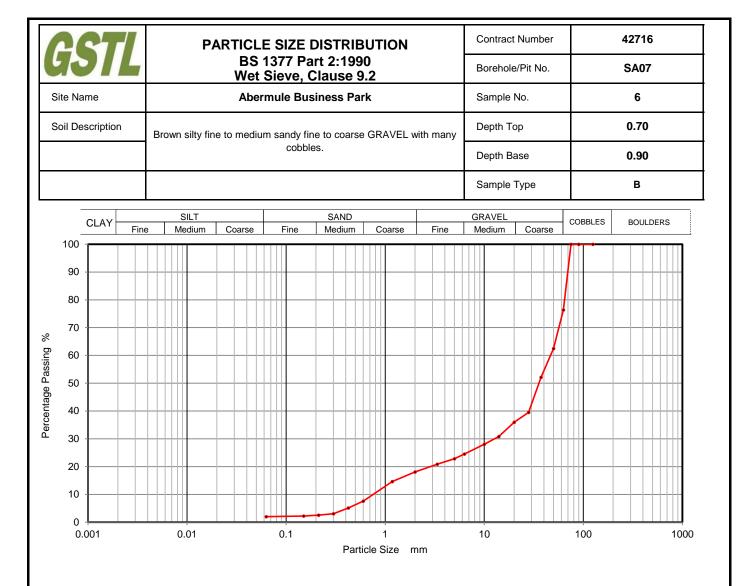
Sample Proportions	% dry mass
Cobbles	21
Gravel	41
Sand	26
Silt and Clay	12



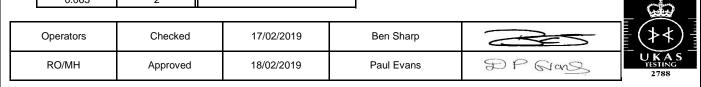
Sieving		Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	76		
50	66		
37.5	61		
28	59		
20	53		
14	51		
10	49		
6.3	48		
5	47		
3.35	45		
2	44		
1.18	42		
0.6	38	1	
0.425	37	1	
0.3	36		
0.212	34	1	
0.15	32	1	
0.063	31	1	

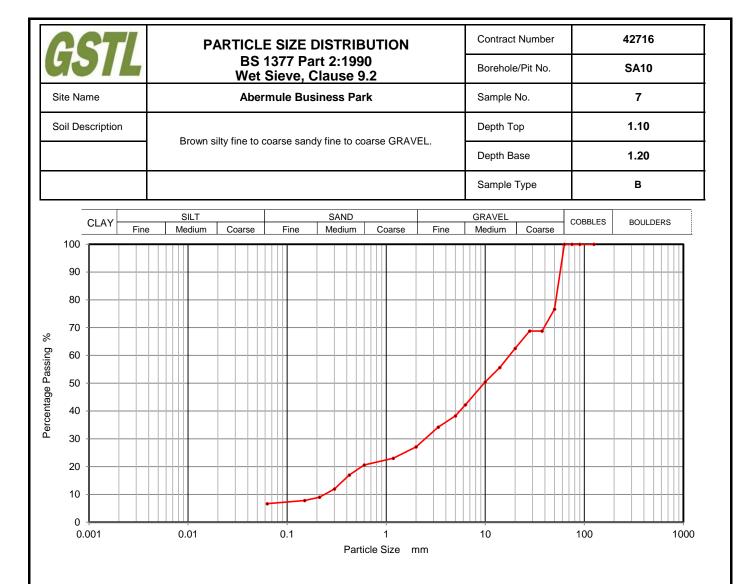
Sample Proportions	% dry mass
Cobbles	24
Gravel	32
Sand	13
Silt and Clay	31


.

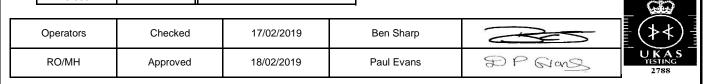

Operators	Checked	17/02/2019	Ben Sharp		
RO/MH	Approved	18/02/2019	Paul Evans	DP Grans	UKAS TESTING 2788

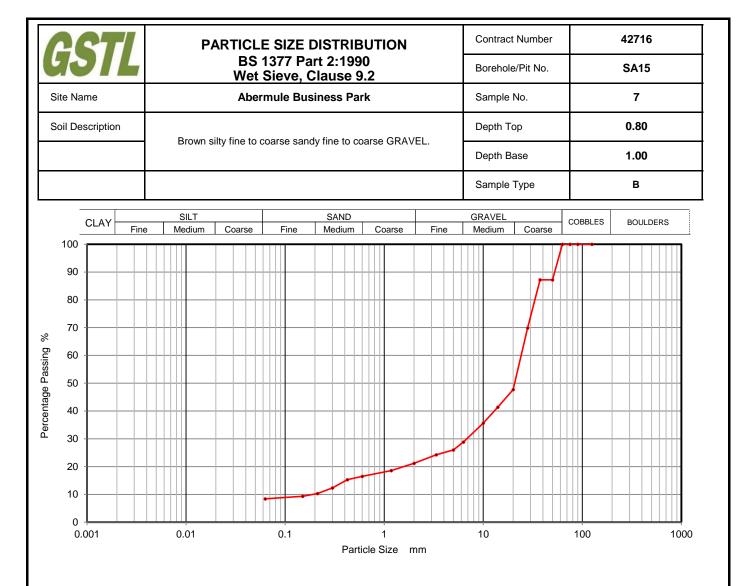
Sieving		Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	80		
37.5	80		
28	73		
20	63		
14	54		
10	49		
6.3	41		
5	36		
3.35	31		
2	23		
1.18	12		
0.6	5		
0.425	4		
0.3	3		
0.212	2		
0.15	2		
0.063	1		


Sample Proportions	% dry mass
Cobbles	0
Gravel	77
Sand	22
Silt and Clay	1

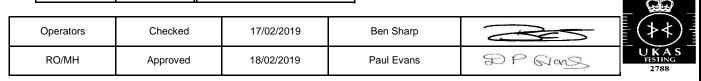


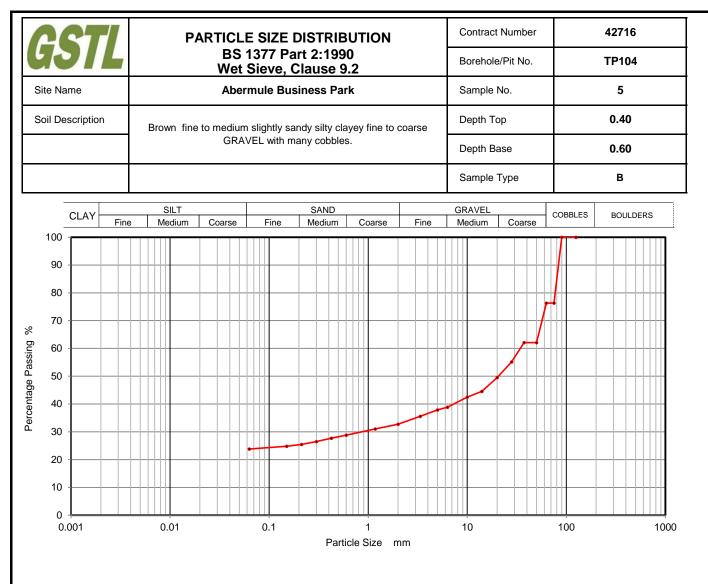
Siev	ing	Sedimer	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	76		
50	63		
37.5	52		
28	39		
20	36		
14	31		
10	28		
6.3	25		
5	23		
3.35	21		
2	18		
1.18	15		
0.6	8		
0.425	5	1	
0.3	3		
0.212	3		
0.15	2		
0.063	2		


Sample Proportions	% dry mass
Cobbles	24
Gravel	58
Sand	16
Silt and Clay	2

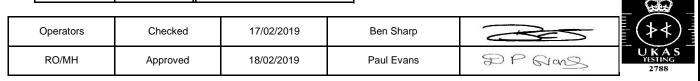


Sievi	ing	Sedimer	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	77		
37.5	69		
28	69		
20	63		
14	56		
10	50		
6.3	42		
5	38		
3.35	34		
2	27		
1.18	23		
0.6	21		
0.425	17		
0.3	12		
0.212	9		
0.15	8		
0.063	7		


Sample Proportions	% dry mass
Cobbles	0
Gravel	73
Sand	20
Silt and Clay	7



Sievi	ing	Sedimer	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	87		
37.5	87		
28	70		
20	48		
14	41		
10	36		
6.3	29		
5	26		
3.35	24		
2	21		
1.18	19		
0.6	16		
0.425	15		
0.3	12		
0.212	10		
0.15	9		
0.063	8		


Sample Proportions	% dry mass
Cobbles	0
Gravel	79
Sand	13
Silt and Clay	8

Siev	ing	Sedimentation			
Particle Size mm	% Passing	Particle Size mm	% Passing		
125	100				
90	100				
75	76				
63	76				
50	62				
37.5	62				
28	55				
20	50				
14	45				
10	42				
6.3	39				
5	38				
3.35	36				
2	33				
1.18	31				
0.6	29				
0.425	28	1			
0.3	27				
0.212	25	1			
0.15	25	1			
0.063	24	1			

Sample Proportions	% dry mass
Cobbles	24
Gravel	43
Sand	9
Silt and Clay	24

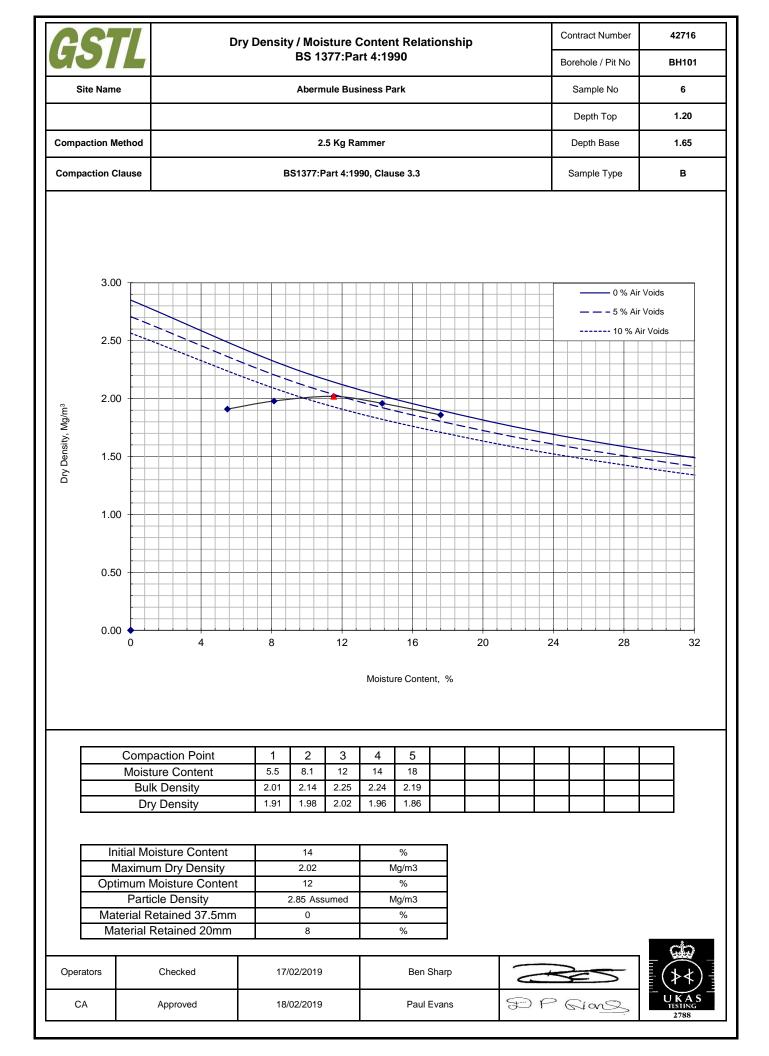
PARTICLE DENSITY BY GAS JAR

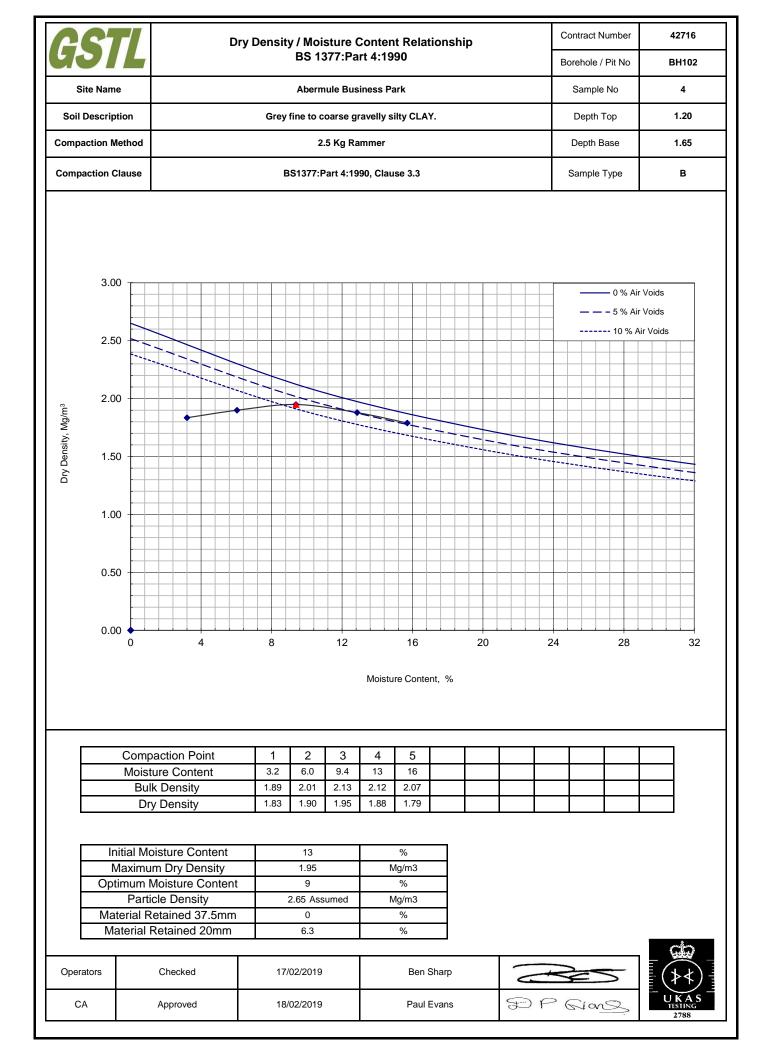
(BS 1377 : PART 2 : 8.2 : 1990)

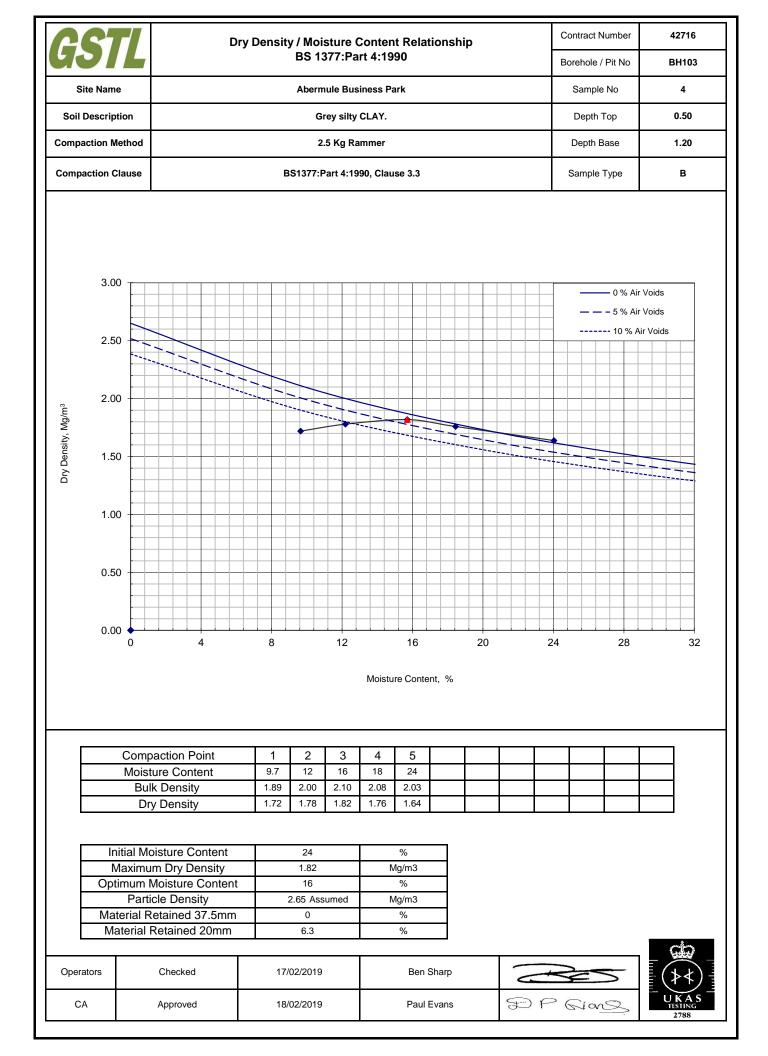
Contract Number	42716	
Site Name	Abermule Business Park	

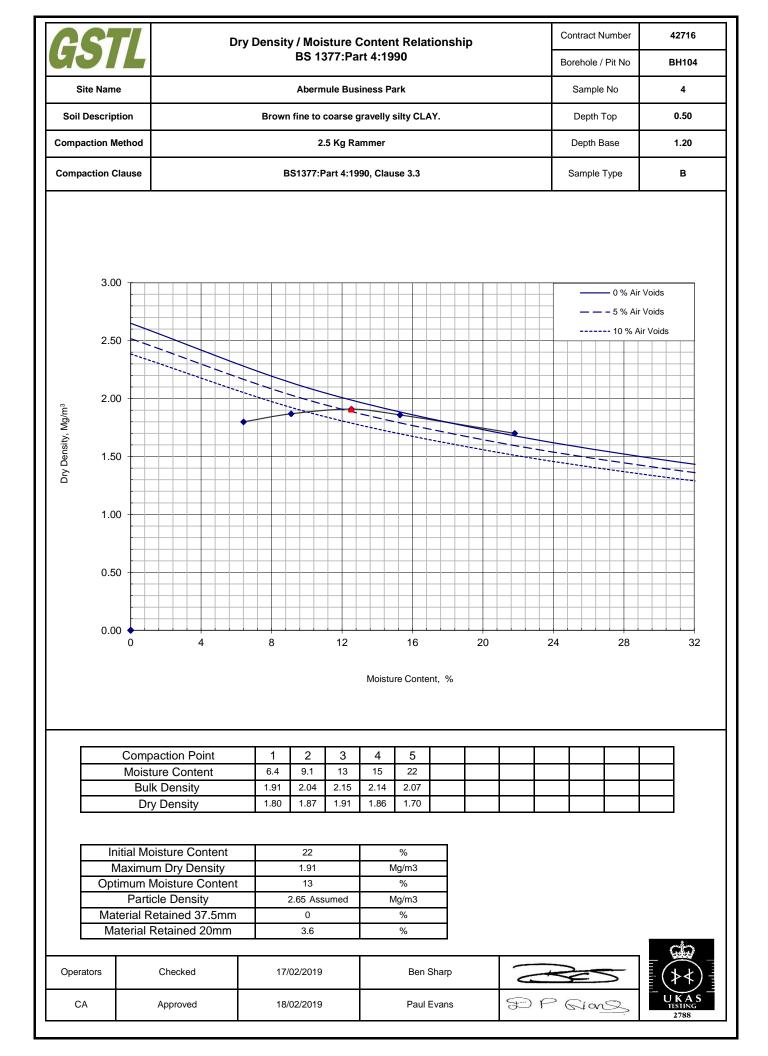
Hole Reference	Sample Number	Sample Type		epth (r				Particle Density	Remark
TP101	7	В	0.60	-	0.80			2.62	
TP104	5	В	0.40	-	0.60			2.63	
				-					
				-					
				-					
				-					
				-					
				-					
				-					
				-					
				-					
				-					
				-					
				-					
				-					
				-					
				-					
				-					
				-					
				-					
				-					
				-					
				-					
				-					
				-					
				-					
				-					
				-					
				-					
				-					
				-					
				-					<u> </u>
	1			-					

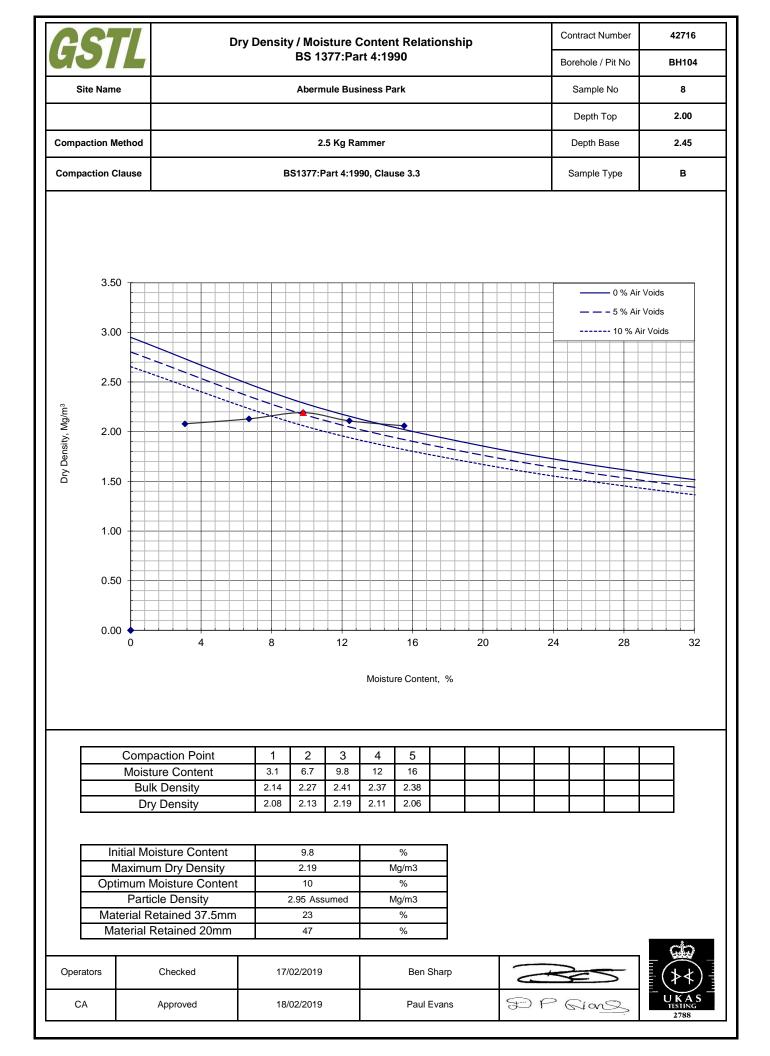
Key	Reported As
Moisture Content	%
Bulk Density	Mg/m ³
Dry Density	Mg/m ³
Particle Density	Mg/m ³
Air Voids	%
,	9

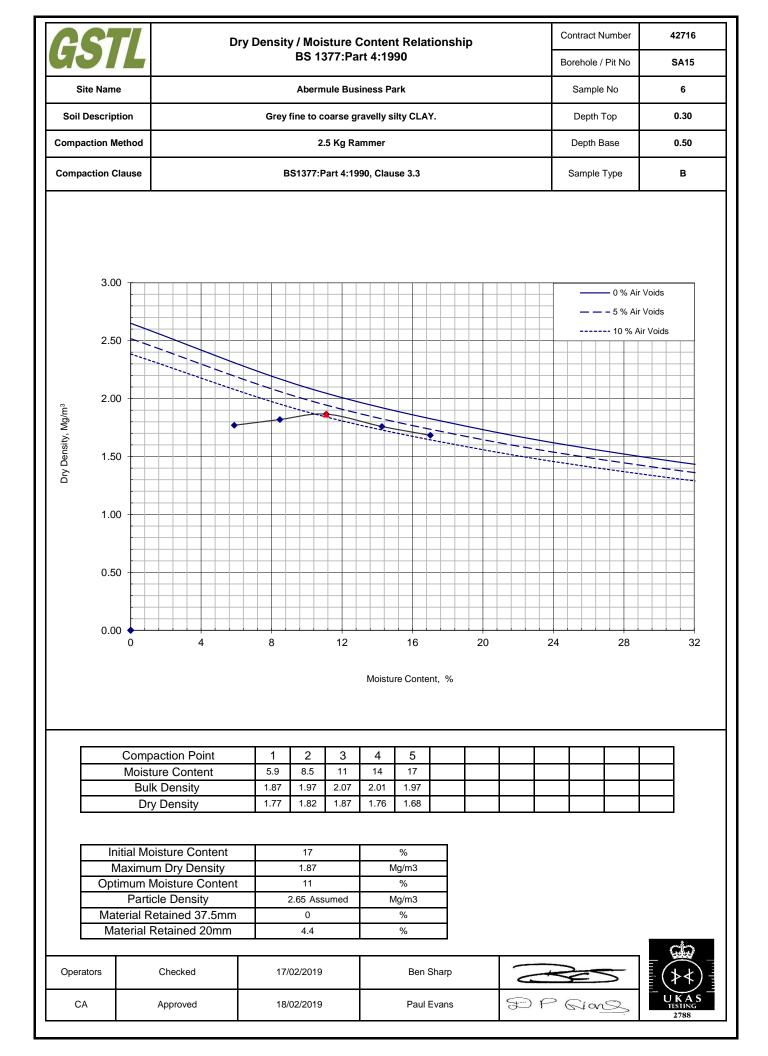

Operators	Checked	19/02/2019	Ben Sharp	RES	
CA/JS	Approved	20/02/2019	Paul Evans	\$P & Grons	
					2788

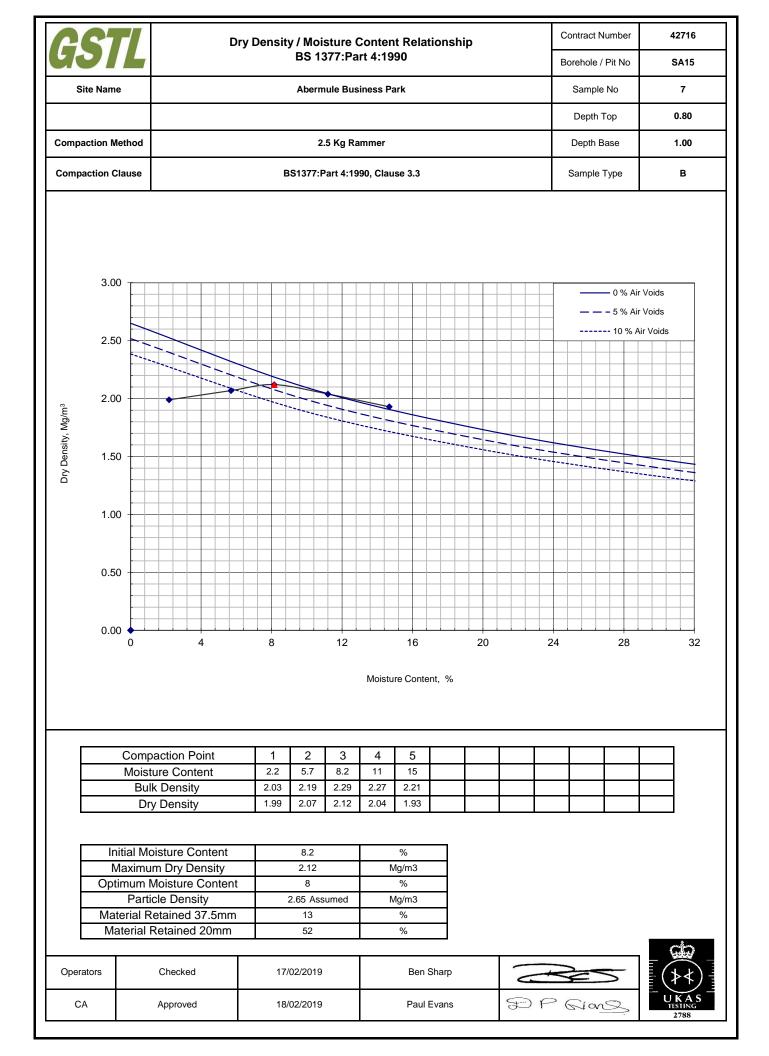

CCT		Cert	ificate o	of Ch	emical	Analysis		Contract	Number		42716					
GS 7		(BRE BR 279) Client Reference									10026414					
Client				Arc	adis			Date R	eceived							
Site Name	,		Aberm	ule B	usiness Par	k		Date S	Started	12/02/2019				12/02/2019		
		Da							mpleted		08/03/2019					
								No. of S	Samples		9					
Hole Number	Sample Number	Sample Type	Acid Aqueous Depth (m) Soluble Extract Sulphate Sulphate						Ph Value	Total Sulphur	Magnesium	Nitrate				
BH101	8	В	2.00	-	2.45	0.27	<0.01	NCP	6.64	0.11	<1	10-25				
BH103	7	D	2.00	-	2.45	0.27	0.03	NCP	7.29	0.12	<1	25-50				
BH104	4	В	0.50	-	1.20	0.25	0.04	NCP	7.36	0.11	<1	50				
SA12	5	В	0.50	-	0.70	0.31	0.03	NCP	7.49	0.13	<1	25-50				
SA14	5	В	0.40	-	0.60	0.27	0.03	NCP	8.01	0.11	<1	10-25				
SA15	6	В	0.30	-	0.50	0.31	0.04	NCP	7.86	0.13	<1	50				
TP101	7	В	0.60	-	0.80	0.31	0.03	NCP	7.94	0.13	<1	50				
BH103	9	D	3.00	3.00 - 3.45			0.03	NCP	7.33	0.11	<1	10-25				
BH104	14	В	5.00	-	5.45	0.27	0.03	NCP	7.62	0.12	<1	25-50				
				-												


BH104	14	В	5.00	-	5.45	0.27	0.03	NCP	7.62	0.12	<1	25-50
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
<u>Key</u>		ī.	ted As	-					<u>arks</u>			
Acid Soluble S			SO ₄	4			N	CP = No Ch	loride Prese	ent		
Aqueous Extrac		1	SO4	4								
Chloride Conte			CI/I	4								
PH Valu			25°	4								
Total Sulp			S									
Magnesi			SO4	-								
Nitrate	9	NO ₃	mg/l]								
Test Operato	or	Checke	d and Auth	orised	by	Dec	Chorp	ē	\rightarrow			
Darren Bourn	ie	Date		06/03	/2019	Ben S	ыар	Y	\sim	>		


GS1	L	Cert			emical art 3 19	Analysis 90	i		t Number eference		42716 10026414	
Client				Arca	adis			Date R	eceived			
Site Name	9		Abern	nule Bu	usiness Par	k		Date S	Started		12/02/2019	
								Date Co	mpleted		18/02/2019	
								No. of S	Samples	1		
Hole Number	Sample Number	Sample Type	D	Depth (m)		Acid Soluble Sulphate	Aqueous Extract Sulphate	Water Soluble Chloride	PH Value	Organic Matter Content	Acid Soluble Chloride	Loss Or Ignition
BH103	5	D	1.20	-	1.65					1.9		
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
		+	ļ	-	ļ							<u> </u>
				-								
				-								
				-								
		1		-								
				-								
		ļ		-		ļ						
	1	1		-			I					i


			-								
			-								
			-								
			-								
			-								
			-								
			-								
<u>Key</u>	Repor	ted As		<u>Claus</u>	<u>e</u>	_	Rem	arks			
Acid Soluble Sulpha	ate % S	SO₃	Clause 5.2		& 5.5	NCP = No Chloride Present		ent			
Aqueous Extract Sulp	hate g/l	SO₃	Clause 5.3		& 5.5						
Water Soluble Chlor	ride 9	%		Clause	7.2						
PH Value	@	25°		Clause	9.5						
Organic	0	%		Clause	3						
Acid Soluble Chlori	de 🤗	%		Clause	7.3						
LOI	Q	%		Clause	4						
	1				1		1			-	
Test Operator	Checke	d and Autho	orised	by	Bon	Sharp			~		
Darren Bourne	Date		18/02	2/2019	Della	Jilaip	4	\rightarrow	\sim		





APPENDIX H

Environmental Laboratory Results

Asbestos Laboratory Reports and Material Risk Assessment Reports (as provided by Powys County Council)

Gemma Francis Arcadis Consulting (UK) Ltd 5th Floor The Pithay Bristol BS1 2NL

t: 01173721360

e: Gemma.Francis@arcadis.com

Analytical Report Number : 19-24944

Project / Site name:	Abermule Business Park	Samples received on:	11/01/2019
Your job number:	10026414	Samples instructed on:	15/01/2019
Your order number:		Analysis completed by:	24/01/2019
Report Issue Number:	1	Report issued on:	24/01/2019
Samples Analysed:	8 soil samples		

LAL Signed:

Jordan Hill Reporting Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Business Park, Watford, Herts, WD18 8YS t: 01923 225404

7 Woodshots Meadow,

i2 Analytical Ltd.

Croxley Green

f: 01923 237404 **e:** reception@i2analytical.com

Project / Site name: Abermule Business Park

Lab Sample Number				1131913	1131914	1131915	1131916	1131917
Sample Reference				SA01	SA01	SA05	SA06	SA08
Sample Number				1	3	1	1	1
Depth (m)				0.00-0.10	0.30-0.50	0.00-0.30	0.00-0.20	0.00-0.20
Date Sampled				Deviating	Deviating	Deviating	Deviating	Deviating
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	15	9.0	16	19	16
Total mass of sample received	kg	0.001	NONE	1.2	1.3	1.1	1.8	2.0
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics			-					
pH - Automated	pH Units	N/A	MCERTS	7.5	7.2	7.0	6.4	7.8
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Free Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.015	0.012	0.016	0.013	0.0090
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	0.53	< 0.05	0.51	0.25	< 0.05
Pyrene	mg/kg	0.05	MCERTS	0.51	< 0.05	0.47	0.25	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.43	< 0.05	0.31	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	0.31	< 0.05	0.30	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	0.57	< 0.05	0.45	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.20	< 0.05	0.24	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.45	< 0.05	0.39	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.27	< 0.05	0.22	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.29	< 0.05	0.23	< 0.05	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	3.56	< 0.80	3.12	< 0.80	< 0.80

Project / Site name: Abermule Business Park

Lab Sample Number				1131913	1131914	1131915	1131916	1131917
Sample Reference				SA01	SA01	SA05	SA06	SA08
Sample Number				1	3	1	1	1
Depth (m)				0.00-0.10	0.30-0.50	0.00-0.30	0.00-0.20	0.00-0.20
Date Sampled				Deviating	Deviating	Deviating	Deviating	Deviating
Time Taken		-	-	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids	-	-	-					
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	9.3	13	8.5	9.2	13
Boron (water soluble)	mg/kg	0.2	MCERTS	1.1	0.3	1.4	0.9	0.8
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	35	36	34	38	33
Copper (aqua regia extractable)	mg/kg	1	MCERTS	28	41	26	26	27
Lead (aqua regia extractable)	mg/kg	1	MCERTS	31	27	31	31	27
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	32	44	34	35	33
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	110	110	120	120	110
Monoaromatics								
Benzene	ug/kg	1	MCERTS	< 1.0	-	< 1.0	-	-

Toluene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	-	-
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	-	-
p & m-xylene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	-	-
o-xylene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	-	-
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	-	< 1.0	-	-

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	-	-
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	-	-
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	-	-
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	-	< 1.0	-	-
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	-	< 2.0	-	-
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	-	< 8.0	-	-
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	-	< 8.0	-	-
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	-	< 10	-	-
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	-	-
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	-	-
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	-	-
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	-	< 1.0	-	-
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	-	< 2.0	-	-
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	-	< 10	-	-
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	13	-	22	-	-
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	16	-	26	-	-

Project / Site name: Abermule Business Park

Lab Sample Number				1131918	1131919	1131920	1
Sample Reference				SA11	SA14	SA16	
Sample Number				None Supplied	1	1	
Depth (m)				0.00-0.30	0.10-0.30	0.00-0.20	
Date Sampled				Deviating	Deviating	Deviating	
Time Taken				None Supplied	None Supplied	None Supplied	l
	1	1		None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Stone Content	%	0.1	NONE	27	< 0.1	< 0.1	
Moisture Content	%	N/A	NONE	14	17	16	
Total mass of sample received	kg	0.001	NONE	1.7	1.7	1.7	
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	
General Inorganics							
pH - Automated	pH Units	N/A	MCERTS	7.3	7.0	7.2	
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	i i
Free Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	
Water Soluble SO4 16hr extraction (2:1 Leachate							
Equivalent)	g/l	0.00125	MCERTS	0.013	0.014	0.013	ļ
Total Phenols							
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
Speciated PAHs							
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	1.8	
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.47	
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	8.2	
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	7.7	
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	5.5	
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	4.6	
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	7.8	
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	3.7	
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	7.2	
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	4.4	
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.97	
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	4.8	
Total PAH							
Speciated Total EPA-16 PAHs	m m //	0.0	MCEDIC	< 0.90	< 0.80	E7 1	1
Specialeu Tulai EPA-10 PARS	mg/kg	0.8	MCERTS	< 0.80	< 0.80	57.1	

Project / Site name: Abermule Business Park

Lab Sample Number				1131918	1131919	1131920	
Sample Reference				SA11	SA14	SA16	
Sample Number				None Supplied	1	1	
Depth (m)		0.00-0.30	0.10-0.30	0.00-0.20			
Date Sampled				Deviating	Deviating	Deviating	
Time Taken		None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Heavy Metals / Metalloids							
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	7.9	12	11	
Boron (water soluble)	mg/kg	0.2	MCERTS	0.3	0.7	1.5	
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	29	39	35	
Copper (aqua regia extractable)	mg/kg	1	MCERTS	23	31	40	
Lead (aqua regia extractable)	mg/kg	1	MCERTS	26	29	57	
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	28	36	29	
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	110	130	130	

Monoaromatics

Benzene	ug/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	48	
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	52	
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	2.6	
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	66	
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	15	290	
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	17	360	

Project / Site name: Abermule Business Park

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1131913	SA01	1	0.00-0.10	Brown loam and clay with gravel and vegetation.
1131914	SA01	3	0.30-0.50	Brown loam and clay with gravel and vegetation.
1131915	SA05	1	0.00-0.30	Brown loam and clay with gravel and vegetation.
1131916	SA06	1	0.00-0.20	Brown loam and clay with gravel and vegetation.
1131917	SA08	1	0.00-0.20	Brown loam and clay with gravel and vegetation.
1131918	SA11	None Supplied	0.00-0.30	Brown loam and clay with vegetation and stones.
1131919	SA14	1	0.10-0.30	Brown loam and clay with gravel and vegetation.
1131920	SA16	1	0.00-0.20	Brown loam and clay with gravel and vegetation.

Project / Site name: Abermule Business Park

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC- MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 2:1 water:soil extraction, analysis by ICP- OES.	L038-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
For an address of the second sec	K' analysis have been carried out in our laborat	I La constructura da la dalla da da da construcción da construcción da la dalla da da da da da da da da da da da			8

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Sample ID	Other_ID	Sample Type	Job	Sample Number	Sample Deviation Code	test_name	test_ref	Test Deviation code
SA01	1	S	19-24944	1131913	a			
SA01	3	S	19-24944	1131914	a			
SA05	1	S	19-24944	1131915	a			
SA06	1	S	19-24944	1131916	a			
SA08	1	S	19-24944	1131917	a			
SA11		S	19-24944	1131918	a			
SA14	1	S	19-24944	1131919	a			
SA16	1	S	19-24944	1131920	a			

Karl Addison Arcadis Consulting (UK) Ltd 5th Floor 401 Faraday Street Birchwood Park Warrington WA3 6GA

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: karl.addison@arcadis.com

Analytical Report Number : 19-24967

Project / Site name:	Abermule Business Park	Samples received on:	11/01/2019
Your job number:	10026414	Samples instructed on:	15/01/2019
Your order number:	14020726	Analysis completed by:	24/01/2019
Report Issue Number:	1	Report issued on:	24/01/2019
Samples Analysed:	5 soil samples		

Signed:

Jordan Hill Reporting Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Project / Site name: Abermule Business Park

Your Order No: 14020726

Sample Karbone BH102	Lab Sample Number				1132073	1132074	1132075	1132076	1132077	
Sample Number None Supplied None Sup	· · · · · · · · · · · · · · · · · · ·									
Depth (m) Out-0.50 0.00-0.50 1.00-0.50 1.00-0.50 0.00-0.50 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>										
Date Sampled Deviating Deviating <thdeviating< th=""> <thdeviating< th=""> <</thdeviating<></thdeviating<>										
Time Taken None Supplied None Supplied None Supplied None Supplied Analytical Parameter (Soil Analysis) g										
					•	-	•			
Some Context % NA NOME < 0.1										
Some Context % NA NOME < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 <th< td=""><td></td><td></td><td>8 -</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>			8 -							
Some Context % NA NOME < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 <th< td=""><td></td><td>S.</td><td>te ini</td><td>ed</td><td></td><td></td><td></td><td></td><td></td></th<>		S.	te ini	ed						
Some Context % NA NOME < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 <th< td=""><td>(Soil Analysis)</td><td>its</td><td>ti d</td><td>itat</td><td></td><td></td><td></td><td></td><td></td></th<>	(Soil Analysis)	its	ti d	itat						
Some Context % NA NOME < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 <th< td=""><td></td><td></td><td></td><td>ion</td><td></td><td></td><td></td><td></td><td></td></th<>				ion						
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Stone Contant	0/	0.1		< 0.1	< 0.1	20	< 0.1	< 0.1	
$ Total mass of sample received is g 0.001 NONE 1.3 1.1 1.6 1.8 2.0 \\ Advestos in Soil Type N/A ISO 17025 Not-detected Not-Not Not Not Not Not Not Not Not Not Not $										
General Lorganics pt Justs N/A MCERTS 6.6 6.7 7.2 6.8 6.9 Total Cvanide maka 1 MCERTS < 1	Total mass of sample received	ку	0.001	NONE	1.5	1.1	1.0	1.0	2.0	
General Lorganics pt Justs N/A MCERTS 6.6 6.7 7.2 6.8 6.9 Total Cvanide maka 1 MCERTS < 1	Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
	General Inorganics		<u>.</u>							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	pH - Automated	pH Units	N/A	MCERTS	6.6	6.7	7.2	6.8	6.9	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1	
Water Soluble SO4 16hr extraction (2:1 Leachate g/l 0.0125 MCERTS 0.016 0.013 0.0081 0.014 0.011 Total Phenols Total Phenols Total Phenols (monohydric) mg/kg 1 MCERTS < 1.0	Free Cyanide		1	MCERTS	< 1	< 1	< 1	< 1	< 1	
Total Phenols Total Phenols (monohydric) mg/kg 1 MCERTS <th colsp<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Total Phenols (monohydric) mg/kg 1 MCERTS < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 Speciated PAHs Naphthelene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	Equivalent)	g/l	0.00125	MCERTS	0.016	0.013	0.0081	0.014	0.011	
Total Phenols (monohydric) mg/kg 1 MCERTS < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 Speciated PAHs Naphthelene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	Total Dhanala									
Speciated PAHs Naphthalene m_g/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 <td></td> <td></td> <td>-</td> <td>MCEDIC</td> <td>. 1 0</td> <td>~ 1.0</td> <td>~ 1.0</td> <td>. 10</td> <td>< 1.0</td>			-	MCEDIC	. 1 0	~ 1.0	~ 1.0	. 10	< 1.0	
Naphthalene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.	Total Phenois (mononydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
Naphthalene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.	Speciated PAHs									
Acenaphthylene m_g/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 <t< td=""><td></td><td>malka</td><td>0.05</td><td>MCEDITC</td><td>< 0.05</td><td>< 0.05</td><td>< 0.0F</td><td>< 0.05</td><td>< 0.05</td></t<>		malka	0.05	MCEDITC	< 0.05	< 0.05	< 0.0F	< 0.05	< 0.05	
Acenaphthene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0										
Fluorene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 Phenanthrene mg/kg 0.05 MCERTS < 0.05										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
Anthracene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05										
Fluoranthene mg/kg 0.05 MCERTS 0.26 < 0.05 < 0.05 < 0.05 Pyrene mg/kg 0.05 MCERTS 0.24 < 0.05										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
Chrysene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
Benzo(b)fluoranthene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05										
Benzo(k)fluoranthene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05										
Benzo(a)pyrene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 <										
Inden(1,2,3-cd)pyrene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05										
Dibenz(a,h)anthracene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05										
Benzo(ghi)perylene mg/kq 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 Total PAH Speciated Total EPA-16 PAHs mg/kq 0.8 MCERTS < 0.80										
Total PAH Speciated Total EPA-16 PAHs mg/kg 0.8 MCERTS < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.										
Speciated Total EPA-16 PAHs mg/kg 0.8 MCERTS < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80		a			. 5105	. 5105	. 5105	. 5105	. 5105	
Heavy Metals / Metalloids Arsenic (aqua regia extractable) mg/kg 1 MCERTS 9.3 12 11 12 12 Boron (water soluble) mg/kg 0.2 MCERTS 1.1 1.3 < 0.2	Total PAH									
Arsenic (aqua regia extractable) mg/kq 1MCERTS9.312111212Boron (water soluble) mg/kg 0.2MCERTS1.11.3<0.2	Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80	< 0.80	< 0.80	
Arsenic (aqua regia extractable) mg/kq 1MCERTS9.312111212Boron (water soluble) mg/kg 0.2MCERTS1.11.3<0.2										
Boron (water soluble) mg/kg 0.2 MCERTS 1.1 1.3 < 0.2 0.9 < 0.2 Cadmium (aqua regia extractable) mg/kg 0.2 MCERTS < 0.2	Heavy Metals / Metalloids					I		1		
Cadmium (aqua regia extractable) mg/kg 0.2 MCERTS < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	Arsenic (aqua regia extractable)									
Chromium (hexavalent) mg/kg 4 MCERTS < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 <td></td> <td>mg/kg</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		mg/kg								
Chromium (aqua regia extractable) mg/kg 1 MCERTS 38 40 28 36 32 Copper (aqua regia extractable) mg/kg 1 MCERTS 30 29 34 30 31 Lead (aqua regia extractable) mg/kg 1 MCERTS 31 29 17 33 22 Mercury (aqua regia extractable) mg/kg 0.3 MCERTS < 0.3	Cadmium (aqua regia extractable)									
Copper (aqua regia extractable) mg/kg 1 MCERTS 30 29 34 30 31 Lead (aqua regia extractable) mg/kg 1 MCERTS 31 29 17 33 22 Mercury (aqua regia extractable) mg/kg 0.3 MCERTS < 0.3	Chromium (hexavalent)									
Lead (aqua regia extractable) mg/kg 1 MCERTS 31 29 17 33 22 Mercury (aqua regia extractable) mg/kg 0.3 MCERTS < 0.3	Chromium (aqua regia extractable)									
Mercury (aqua regia extractable) mg/kg 0.3 MCERTS < 0.3 0.3 < 0.3 0.7 < 0.3 Nickel (aqua regia extractable) mg/kg 1 MCERTS 36 37 37 33 38 Selenium (aqua regia extractable) mg/kg 1 MCERTS < 1.0	Copper (aqua regia extractable)	mg/kg	1							
Nickel (aqua regia extractable) mg/kg 1 MCERTS 36 37 37 33 38 Selenium (aqua regia extractable) mg/kg 1 MCERTS < 1.0		mg/kg								
Selenium (aqua regia extractable) mg/kg 1 MCERTS < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS						
	Nickel (aqua regia extractable)	mg/kg	1	MCERTS	36	37		33		
Zinc (aqua regia extractable) mg/kg 1 MCERTS 120 130 98 130 100	Selenium (aqua regia extractable)	mg/kg	1	MCERTS						
	Zinc (aqua regia extractable)	mg/kg	1	MCERTS	120	130	98	130	100	

Project / Site name: Abermule Business Park

Your Order No: 14020726

Lab Sample Number	Lab Sample Number				1132074	1132075	1132076	1132077
Sample Reference				BH101	BH102	BH102	BH106	BH106
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.00-0.50	0.00-0.50	1.20-1.65	0.10-0.20	0.60-0.80
Date Sampled	Deviating	Deviating	Deviating	Deviating	Deviating			
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					

Monoaromatics

Benzene	ug/kg	1	MCERTS	-	< 1.0	-	-	-
Toluene	µg/kg	1	MCERTS	-	< 1.0	-	-	-
Ethylbenzene	µg/kg	1	MCERTS	-	< 1.0	-	-	-
p & m-xylene	µg/kg	1	MCERTS	-	< 1.0	-	-	-
o-xylene	µg/kg	1	MCERTS	-	< 1.0	-	-	-
MTBE (Methyl Tertiary Butyl Ether)	ua/ka	1	MCERTS	-	< 1.0	-	-	-

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	-	< 0.001	-	-	-
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	-	< 0.001	-	-	-
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	< 0.001	-	-	-
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-	< 1.0	-	-	-
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-	< 2.0	-	-	-
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-	< 8.0	-	-	-
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-	< 8.0	-	-	-
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	-	< 10	-	-	-
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	-	< 0.001	-	-	-
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	-	< 0.001	-	-	-
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	< 0.001	-	-	-
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-	< 1.0	-	-	-
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-	< 2.0	-	-	-
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-	< 10	-	-	-
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	-	< 10	-	-	-
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	-	< 10	-	-	-

Project / Site name: Abermule Business Park

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1132073	BH101	None Supplied	0.00-0.50	Brown clay and loam with vegetation.
1132074	BH102	None Supplied	0.00-0.50	Brown loam and clay with vegetation.
1132075	BH102	None Supplied	1.20-1.65	Beige clay and sand with stones.
1132076	BH106	None Supplied	0.10-0.20	Brown clay and loam with vegetation.
1132077	BH106	None Supplied	0.60-0.80	Brown gravelly clay.

Project / Site name: Abermule Business Park

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC- MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 2:1 water:soil extraction, analysis by ICP- OES.	L038-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
For work and some house and the set of the	Ki analysis have been samiad out in our labour				

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Sample ID	Other_ID	Sample Type	Job	Sample Number	Sample Deviation Code	test_name	test_ref	Test Deviation code
BH101		S	19-24967	1132073	a			
BH102		S	19-24967	1132074	a			
BH102		S	19-24967	1132075	a			
BH106		S	19-24967	1132076	a			
BH106		S	19-24967	1132077	a			

Gemma Francis Arcadis Consulting (UK) Ltd 5th Floor The Pithay Bristol BS1 2NL

t: 01173721360

e: Gemma.Francis@arcadis.com

Analytical Report Number : 19-26283

Project / Site name:	Abermule Business Park	Samples received on:	17/01/2019
Your job number:	10026414	Samples instructed on:	25/01/2019
Your order number:	14020726	Analysis completed by:	04/02/2019
Report Issue Number:	1	Report issued on:	04/02/2019
Samples Analysed:	16 soil samples		

LAL Signed:

Jordan Hill Reporting Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Page 1 of 12

7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

i2 Analytical Ltd.

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

Project / Site name: Abermule Business Park

Your Order No: 14020726

Lab Sample Number				1140521	1140522	1140523	1140524	1140525
Lab Sample Number				TP101	TP101	TP102	TP102	TP103
Sample Reference				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.00-0.20	0.20-0.40	0.00-0.20	0.60-0.80	0.00-0.30
Date Sampled				Deviating	Deviating	Deviating	Deviating	Deviating
Time Taken			None Supplied	None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	19	< 0.1
Moisture Content	%	N/A	NONE	15	12	16	6.3	16
Total mass of sample received	kg	0.001	NONE	1.1	1.2	1.1	1.3	1.1
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	6.2	6.8	6.9	7.3	6.5
Total Cyanide	mg/kg	1	MCERTS	< 1	1	< 1	< 1	< 1
Free Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Water Soluble SO4 16hr extraction (2:1 Leachate		<u> </u>	TICENTS	~ 1	~ 1	~ 1	` 1	<u>,</u>
Equivalent)	g/l	0.00125	MCERTS	0.014	0.0068	0.010	0.0069	0.012
			-					
Total Phenols							n	
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs	-							
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05	< 0.05 < 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene Benzo(a)anthracene	mg/kg mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05 < 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
							-	
Total PAH Speciated Total EPA-16 PAHs	m=//	0.8	MCEDITO	< 0.80	< 0.80	< 0.80	< 0.80	< 0.80
Specialeu IUlai ERA-10 RAAS	mg/kg	0.8	MCERTS	< U.ðU	< 0.80	< 0.80	< U.ðU	< 0.80
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	13	12	12	16	9.7
Boron (water soluble)	mg/kg	0.2	MCERTS	1.4	0.7	1.9	0.6	1.5
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	52	33	40	28	39
Copper (aqua regia extractable)	mg/kg	1	MCERTS	35	33	35	39	28
Lead (aqua regia extractable)	mg/kg	1	MCERTS	31	19	33	26	30
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	39	41	35	39	34
Selenium (aqua regia extractable) Zinc (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0 99	< 1.0
בוווב נמקטם ופעום פגנומנומטופ)	mg/kg	1	MCERTS	130	110	130	33	120

Project / Site name: Abermule Business Park

Your Order No: 14020726

Lab Sample Number				1140521	1140522	1140523	1140524	1140525
Sample Reference				TP101	TP101	TP102	TP102	TP103
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)		0.00-0.20	0.20-0.40	0.00-0.20	0.60-0.80	0.00-0.30		
Date Sampled	Deviating	Deviating	Deviating	Deviating	Deviating			
Time Taken		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates	-							
Benzene	ug/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	1.3	1.2	1.3	1.2	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	11	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	14
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	14

Project / Site name: Abermule Business Park

Your Order No: 14020726

Sample Karberace TP101 TP104	Lab Sample Number			1140526	1140527	1140528	1140529	1140530	
Sample Number None Supplied None Sup	· · · · · · · · · · · · · · · · · · ·								
Depth (n) Out-0.20									
Date Sampled Devising	-								
Time Taken None Supplied None Supplied None Supplied None Supplied Analytical Parameter (Soil Analysis) g									
					•	-	•		
Sine Curtant % N/A NONE < 0.1				~					
Sine Curtant % N/A NONE < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 f bit formation of the second of the secon			8 -						
Sine Curtant % N/A NONE < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 f bit formation of the second of the secon		S.	te ini	edi					
Sine Curtant % N/A NONE < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 f bit formation of the second of the secon	(Soil Analysis)	ts	tio	itat					
Sine Curtant % N/A NONE < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 f bit formation of the second of the secon				ion					
	Stone Contant	0/	0.1		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Total mass of sample received ig 0.001 NONE 1.0 1.2 1.2 1.8 1.8 Asbestos in Soll Type N/A JSO 17025 Not-detected I I I I Secondard Second									
General Inorganics pt Justa NVA MCERTS 6.9 7.0 6.8 6.6 6.5 Total Qranide maka 1 MCERTS < 1	Total mass of sample received	ку	0.001	NONE	1.0	1.2	1.2	1.0	1.0
General Inorganics pt Justa NVA MCERTS 6.9 7.0 6.8 6.6 6.5 Total Qranide maka 1 MCERTS < 1	Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	•	• / ·							
	General Inorganics		<u>.</u>						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	pH - Automated	pH Units	N/A	MCERTS	6.9	7.0	6.8	6.6	6.5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Water Soluble SO4 16hr extraction (2:1 Leachate g/l g/l 0.0125 MCERTS 0.024 0.018 0.024 0.013 Total Phenols Total Phenols Total Phenols (monohydric) mg/kg 1 MCERTS < 1.0	Free Cyanide		1	MCERTS	< 1	< 1	< 1	< 1	< 1
Total Phenols Total Phenols (monohydric) mg/kg 1 MCERTS < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0									
	Equivalent)	g/l	0.00125	MCERTS	0.024	0.018	0.024	0.015	0.013
	Total Dhanala								
Speciated PAHs Naphthalene m_g/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Naphthalene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.	Total Phenois (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Naphthalene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.	Specieted DAMe								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			0.05	MCEDIC	< 0.0F	< 0.0F	< 0.0F	< 0.0F	< 0.0E
Acenaphthene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0									
Fluorene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 Phenarthrene mg/kg 0.05 MCERTS < 0.05									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
Anthracene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
Chrysene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Benzo(b)fluoranthene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05									
Benzo(k)fluoranthene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05									
Benzo(a)pyrene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 <									
Inden(1,2,3-cd)pyrene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05									
Dibenz(a,h)anthracene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05									
Benzo(qhi)perylene mg/kq 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 Total PAH Speciated Total EPA-16 PAHs mg/kq 0.8 MCERTS < 0.80									
Total PAH Speciated Total EPA-16 PAHs mg/kg 0.8 MCERTS < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.									
Speciated Total EPA-16 PAHs mg/kg 0.8 MCERTS < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80		· · · · · · · · · · · · · · · · · · ·							
Speciated Total EPA-16 PAHs mg/kg 0.8 MCERTS < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80	Total PAH								
Heavy Metals / Metalloids Arsenic (aqua regia extractable) mg/kg 1 MCERTS 11 6.0 8.9 9.1 10 Boron (water soluble) mg/kg 0.2 MCERTS 0.8 1.1 0.7 1.0 0.9 Cadmium (aqua regia extractable) mg/kg 0.2 MCERTS <0.2	Speciated Total EPA-16 PAHs	mg/kq	0.8	MCERTS	< 0.80	< 0.80	< 0.80	< 0.80	< 0.80
Arsenic (aqua regia extractable) mg/kq 1MCERTS116.08.99.110Boron (water soluble) mg/kg 0.2MCERTS0.81.10.71.00.9Cadmium (aqua regia extractable) mg/kg 0.2MCERTS< 0.2			-						
Boron (water soluble) mg/kg 0.2 MCERTS 0.8 1.1 0.7 1.0 0.9 Cadmium (aqua regia extractable) mg/kg 0.2 MCERTS < 0.2	Heavy Metals / Metalloids								
Cadmium (aqua regia extractable) mg/kg 0.2 MCERTS < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	Arsenic (aqua regia extractable)	mg/kg		MCERTS		6.0	8.9	9.1	
Cadmium (aqua regia extractable) mg/kg 0.2 MCERTS < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3	Boron (water soluble)	mg/kg	0.2	MCERTS	0.8	1.1	0.7	1.0	0.9
Chromium (aqua regia extractable) mg/kg 1 MCERTS 34 39 33 35 34 Copper (aqua regia extractable) mg/kg 1 MCERTS 28 31 30 23 23 Lead (aqua regia extractable) mg/kg 1 MCERTS 20 26 21 24 26 Mercury (aqua regia extractable) mg/kg 0.3 MCERTS <0.3	Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Copper (aqua regia extractable) mg/kg 1 MCERTS 28 31 30 23 23 Lead (aqua regia extractable) mg/kg 1 MCERTS 20 26 21 24 26 Mercury (aqua regia extractable) mg/kg 0.3 MCERTS < 0.3	Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Lead (aqua regia extractable) mg/kg 1 MCERTS 20 26 21 24 26 Mercury (aqua regia extractable) mg/kg 0.3 MCERTS < 0.3	Chromium (aqua regia extractable)	mg/kg	1	MCERTS			33	35	
Mercury (aqua regia extractable) mg/kg 0.3 MCERTS < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3	Copper (aqua regia extractable)	mg/kg	1	MCERTS	28	31	30	23	23
Nickel (aqua regia extractable) mg/kg 1 MCERTS 39 36 37 32 32 Selenium (aqua regia extractable) mg/kg 1 MCERTS <1.0	Lead (aqua regia extractable)	mg/kg	1	MCERTS		26		24	
Selenium (aqua regia extractable) mg/kg 1 MCERTS < 1.0 < 1.0 < 1.0 < 1.0 < 1.0		mg/kg	0.3	MCERTS					
	Nickel (aqua regia extractable)	mg/kg	1	MCERTS		36		32	
Zinc (aqua regia extractable) mg/kg 1 MCERTS 120 110 100 110 110		mg/kg	1						
	Zinc (aqua regia extractable)	mg/kg	1	MCERTS	120	110	100	110	110

Project / Site name: Abermule Business Park

Your Order No: 14020726

Lab Sample Number				1140526	1140527	1140528	1140529	1140530
Sample Reference				TP103	TP104	TP104	HTP01	HTP02
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)	0.40-0.60	0.00-0.20	0.40-0.60	0.00-0.20	0.00-0.20			
Date Sampled		Deviating	Deviating	Deviating	Deviating	Deviating		
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)								
Monoaromatics & Oxygenates								
Benzene	ug/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	1.2	1.5	1.5	1.6	1.4
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	1.5	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10

Project / Site name: Abermule Business Park

Your Order No: 14020726

Lab Sample Number				1140531	1140532	1140533	1140534	1140535
Sample Reference				HTP03	HTP04	HTP05	HTP06	HTP07
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.00-0.20	0.00-0.20	0.00-0.20	0.00-0.20	0.00-0.20
Date Sampled				Deviating	Deviating	Deviating	Deviating	Deviating
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	6.2	14	15	22	15
Total mass of sample received	kg	0.001	NONE	2.0	2.0	1.7	1.7	1.8
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics		-			•		•	
pH - Automated	pH Units	N/A	MCERTS	7.7	7.9	7.7	7.1	7.3
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Free Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Water Soluble SO4 16hr extraction (2:1 Leachate								
Equivalent)	g/l	0.00125	MCERTS	0.016	0.023	0.046	0.014	0.030
Total Phenois								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
			HIGEITTO	. 110	. 110	. 110	. 110	. 110
Speciated PAHs					Ĩ.		Ĩ.	
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	0.33	< 0.05	0.91	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.32	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	0.87	1.6	< 0.05	4.8	0.30
Pyrene	mg/kg	0.05	MCERTS	0.74	1.6	< 0.05	4.6	0.29
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.45	0.83	< 0.05	2.2	< 0.05
Chrysene	mg/kg	0.05	MCERTS	0.54	0.90	< 0.05	2.3	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	0.74	1.4	< 0.05	3.6	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.36	0.69 1.5	< 0.05	1.2 3.1	< 0.05
Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS MCERTS	0.68	0.89	< 0.05 < 0.05	1.9	< 0.05
Dibenz(a,h)anthracene	mg/kg mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.45	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.49	1.2	< 0.05	2.2	< 0.05
Tabel DAU								
Total PAH Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	5.29	10.9	< 0.80	27.6	< 0.80
Heavy Metals / Metalloids	ma llua	1	MCERTS	4.0	0.0	5.2	0.2	12
Arsenic (aqua regia extractable) Boron (water soluble)	mg/kg mg/kg	1 0.2	MCERTS	4.0	8.0 1.2	0.5	8.3 3.0	1.1
Cadmium (aqua regia extractable)	mg/kg mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	4	MCERTS	40	32	31	33	39
Copper (aqua regia extractable)	mg/kg	1	MCERTS	30	28	23	36	39
Lead (aqua regia extractable)	mg/kg	1	MCERTS	26	51	23	43	30
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	32	31	28	31	39
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	77	110	120	150	140
						120	100	2.0

Project / Site name: Abermule Business Park

Your Order No: 14020726

Lab Sample Number				1140531	1140532	1140533	1140534	1140535
Sample Reference				HTP03	HTP04	HTP05	HTP06	HTP07
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)		0.00-0.20	0.00-0.20	0.00-0.20	0.00-0.20	0.00-0.20		
Date Sampled		Deviating	Deviating	Deviating	Deviating	Deviating		
Time Taken		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)								
Monoaromatics & Oxygenates								
Benzene	ug/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	1.2	1.4	< 1.0	1.3	1.2
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	12	< 8.0	17	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	16	< 10	21	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	10	< 10

Project / Site name: Abermule Business Park

Your Order No: 14020726

Lab Sample Number				1140536			1	1
				HTP08				
Sample Reference Sample Number				None Supplied		1	1	
Depth (m)				0.00-0.20				
Date Sampled				Deviating				
Time Taken				None Supplied				
	1	I		None Supplied				
		9 –	Accreditation Status					
Analytical Parameter	Units	ete lim	Sta					
(Soil Analysis)	its	Limit of detection	creditat Status					
		ă T	i i i i					
Change Comband		0.1		. 0.1				
Stone Content Moisture Content	%	0.1 N/A	NONE	< 0.1				
Total mass of sample received	% kg	0.001	NONE NONE	27 1.6				
Total mass of sample received	ку	0.001	INUNE	1.0				
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	ľ	l i i i i i i i i i i i i i i i i i i i	r	l I
	./pc	.,,,,	100 17025	Hot detected				
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	7.5				
Total Cyanide	mg/kg	1	MCERTS	< 1		1	I	
Free Cyanide	mg/kg	1	MCERTS	< 1				
Water Soluble SO4 16hr extraction (2:1 Leachate								
Equivalent)	g/l	0.00125	MCERTS	0.029		<u> </u>		<u> </u>
Total Phenois	1					1	r	
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0				
Consistent DALLS								
Speciated PAHs		0.05		0.05				-
Naphthalene	mg/kg	0.05	MCERTS	< 0.05				
Acenaphthylene Acenaphthene	mg/kg	0.05	MCERTS	< 0.05 < 0.05				
Fluorene	mg/kg	0.05	MCERTS					
Phenanthrene	mg/kg	0.05	MCERTS MCERTS	< 0.05 0.67				
Anthracene	mg/kg mg/kg	0.05	MCERTS	0.19				
Fluoranthene	mg/kg	0.05	MCERTS	2.5				
Pyrene	mg/kg	0.05	MCERTS	2.3				
Benzo(a)anthracene	mg/kg	0.05	MCERTS	1.1				
Chrysene	mg/kg	0.05	MCERTS	1.1				
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	1.5				
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.73			1	1
Benzo(a)pyrene	mg/kg	0.05	MCERTS	1.4			1	
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.84				
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05				
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.95				
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	13.2				
Heavy Metals / Metalloids						1		
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	18			ļ	
Boron (water soluble)	mg/kg	0.2	MCERTS	2.2		ļ	ļ	
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	1.2		ļ	I	
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0		ļ	I	
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	39		 	1	
Copper (aqua regia extractable)	mg/kg	1	MCERTS	330		 	1	
Lead (aqua regia extractable)	mg/kg	1	MCERTS	55		 	l	
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3		 	l	l
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	32			l	
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0			l	
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	290		l	I	

Project / Site name: Abermule Business Park

Your Order No: 14020726

Lab Sample Number				1140536			
Sample Reference				HTP08			
Sample Number				None Supplied			
Depth (m)							
Date Sampled							
Time Taken				None Supplied			
Accreditation Accreditation Status Status Status Soil Analysis)							
Monoaromatics & Oxygenates							
Benzene	ug/kg	1	MCERTS	< 1.0			
Toluene	µg/kg	1	MCERTS	< 1.0			
Ethylbenzene	µg/kg	1	MCERTS	< 1.0			
p & m-xylene	µg/kg	1	MCERTS	< 1.0			
o-xylene	µg/kg	1	MCERTS	< 1.0			
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0			

Petroleum Hydrocarbons

		-				
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001		
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001		
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001		
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	1.3		
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0		
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0		
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	28		
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	35		
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001		
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001		
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001		
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0		
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0		
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10		
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10		
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10		

Project / Site name: Abermule Business Park

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1140521	TP101	None Supplied	0.00-0.20	Brown loam and clay with gravel and vegetation.
1140522	TP101	None Supplied	0.20-0.40	Brown loam and clay with gravel and vegetation.
1140523	TP102	None Supplied	0.00-0.20	Brown loam and clay with gravel and vegetation.
1140524	TP102	None Supplied	0.60-0.80	Brown gravelly loam with stones.
1140525	TP103	None Supplied	0.00-0.30	Brown loam and clay with gravel and vegetation.
1140526	TP103	None Supplied	0.40-0.60	Brown clay and sand with vegetation.
1140527	TP104	None Supplied	0.00-0.20	Brown loam and clay with gravel and vegetation.
1140528	TP104	None Supplied	0.40-0.60	Brown loam and clay with gravel and vegetation.
1140529	HTP01	None Supplied	0.00-0.20	Brown loam and clay with gravel and vegetation.
1140530	HTP02	None Supplied	0.00-0.20	Brown loam and clay with gravel and vegetation.
1140531	HTP03	None Supplied	0.00-0.20	Brown gravelly clay with tar and vegetation.
1140532	HTP04	None Supplied	0.00-0.20	Brown loam and clay with gravel and brick.
1140533	HTP05	None Supplied	0.00-0.20	Brown loam and clay with gravel and vegetation.
1140534	HTP06	None Supplied	0.00-0.20	Brown loam and clay with gravel and vegetation.
1140535	HTP07	None Supplied	0.00-0.20	Brown clay and loam with gravel and vegetation.
1140536	HTP08	None Supplied	0.00-0.20	Brown clay and loam with gravel and vegetation.

Project / Site name: Abermule Business Park

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

				-	
Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC- MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 2:1 water:soil extraction, analysis by ICP- OES.	L038-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Sample ID	Other_ID	Sample Type	Job	Sample Number	Sample Deviation Code	test_name	test_ref	Test Deviation code
HTP01		S	19-26283	1140529	a			
HTP02		S	19-26283	1140530	a			
HTP03		S	19-26283	1140531	a			
HTP04		S	19-26283	1140532	a			
HTP05		S	19-26283	1140533	a			
HTP06		S	19-26283	1140534	a			
HTP07		S	19-26283	1140535	a			
HTP08		S	19-26283	1140536	a			
TP101		S	19-26283	1140521	a			
TP101		S	19-26283	1140522	a			
TP102		S	19-26283	1140523	a			
TP102		S	19-26283	1140524	a			
TP103		S	19-26283	1140525	a			
TP103		S	19-26283	1140526	a			
TP104		S	19-26283	1140527	a			
TP104		S	19-26283	1140528	а			

Gemma Francis Arcadis Consulting (UK) Ltd 5th Floor The Pithay Bristol BS1 2NL

t: 01173721360

e: Gemma.Francis@arcadis.com

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

Analytical Report Number : 19-26285

Replaces Analytical Report Number : 19-26285, issue no. 1

Project / Site name:	Abermule Business Park	Samples received on:	17/01/2019
Your job number:	10026414	Samples instructed on:	25/01/2019
Your order number:	14020726	Analysis completed by:	07/02/2019
Report Issue Number:	2	Report issued on:	08/02/2019
Samples Analysed:	5 soil samples		

Signed:

Jordan Hill Reporting Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Project / Site name: Abermule Business Park

Your Order No: 14020726

Lab Sample Number				1140539	1140540	1140541	1140542	1140543
Sample Reference	BH103	BH103	BH104	BH104	BH105			
Sample Number				1	3	1	3	1
Depth (m)				0.00-0.50	0.50-1.20	0.00-0.50	0.50-1.20	0.00-0.30
Date Sampled				14/01/2019	14/01/2019	15/01/2019	15/01/2019	16/01/2019
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	16	16	17	20	18
Total mass of sample received	kg	0.001	NONE	1.0	1.2	1.1	1.0	1.0
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	6.0	6.9	6.8	7.1	6.5
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Free Cyanide	mg/kg	1	MCERTS	< 1	< 1	<1	< 1	< 1
Water Soluble SO4 16hr extraction (2:1 Leachate	mg/kg	<u> </u>	PICENTJ	~ 1	~ 1	~ 1	~ 1	<u>``</u>
Equivalent)	g/l	0.00125	MCERTS	0.010	0.011	0.015	0.020	0.013
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs		a						
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	1.3	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05 0.30	< 0.05 < 0.05	0.42	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS MCERTS	0.30	< 0.05	6.6 6.3	0.67 0.68	0.26
Pyrene Benzo(a)anthracene	mg/kg mg/kg	0.05	MCERTS	< 0.05	< 0.05	3.1	0.88	< 0.05
Chrysene	mg/kg mg/kg	0.05	MCERTS	< 0.05	< 0.05	3.1	0.27	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	4.5	0.45	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	2.6	0.43	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	4.9	0.22	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	2.6	0.28	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.71	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	3.7	0.36	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	40.0	3.75	< 0.80
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	10	6.7	8.7	7.8	9.1
Boron (water soluble)	mg/kg	0.2	MCERTS	1.1	0.4	1.0	1.1	0.9
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	33	39	36	37	35
Copper (aqua regia extractable)	mg/kg	1	MCERTS	24	24	38	30	24
Lead (aqua regia extractable)	mg/kg	1	MCERTS	34	14	45	31	30
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	36	41	34	36	34
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	120	90	120	110	110

Project / Site name: Abermule Business Park

Your Order No: 14020726

Lab Sample Number	1140539	1140540	1140541	1140542	1140543			
Sample Reference				BH103	BH103	BH104	BH104	BH105
Sample Number				1	3	1	3	1
Depth (m)				0.00-0.50	0.50-1.20	0.00-0.50	0.50-1.20	0.00-0.30
Date Sampled				14/01/2019	14/01/2019	15/01/2019	15/01/2019	16/01/2019
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates	8		-					
Benzene	ug/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
Toluene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
p & m-xylene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
o-xylene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	-	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	-	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	-	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	1.2	-	< 1.0	-	1.1
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	-	3.9	-	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	-	11	-	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	-	59	-	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	-	74	-	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	-	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	-	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	-	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	-	2.7	-	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	-	50	-	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	-	180	-	< 10
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	-	230	-	< 10

Project / Site name: Abermule Business Park

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1140539	BH103	1	0.00-0.50	Brown clay and loam with gravel and vegetation.
1140540	BH103	3	0.50-1.20	Grey clay.
1140541	BH104	1	0.00-0.50	Brown clay and loam with gravel and vegetation.
1140542	BH104	3	0.50-1.20	Brown clay and sand with gravel.
1140543	BH105	1	0.00-0.30	Brown clay and loam with gravel and vegetation.

Project / Site name: Abermule Business Park

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC- MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 2:1 water:soil extraction, analysis by ICP- OES.	L038-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
For an address of a second bases of the second bases for 100	Ki analysis have been samial aut in ave labour	and the state of t			

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Sample ID	Other_ID	Sample Type	Job	Sample Number	Sample Deviation Code	test_name	test_ref	Test Deviation code
BH103	1	S	19-26285	1140539	С	Free cyanide in soil	L080-PL	С
BH103	1	S	19-26285	1140539	с	Total cyanide in soil	L080-PL	С
BH103	3	S	19-26285	1140540	с	Free cyanide in soil	L080-PL	С
BH103	3	S	19-26285	1140540	С	Total cyanide in soil	L080-PL	С
BH104	1	S	19-26285	1140541	с	Free cyanide in soil	L080-PL	С
BH104	1	S	19-26285	1140541	С	Total cyanide in soil	L080-PL	С
BH104	3	S	19-26285	1140542	с	Free cyanide in soil	L080-PL	С
BH104	3	S	19-26285	1140542	с	Total cyanide in soil	L080-PL	С
BH105	1	S	19-26285	1140543	С	Free cyanide in soil	L080-PL	С
BH105	1	S	19-26285	1140543	С	Total cyanide in soil	L080-PL	С

Gemma Francis Arcadis Consulting (UK) Ltd 5th Floor The Pithay Bristol BS1 2NL

t: 01173721360

e: Gemma.Francis@arcadis.com

Analytical Report Number : 19-27265

Project / Site name:	Abermule Business Park	Samples received on:	04/02/2019
Your job number:	10026414	Samples instructed on:	04/02/2019
Your order number:	14020726	Analysis completed by:	12/02/2019
Report Issue Number:	1	Report issued on:	12/02/2019
Samples Analysed:	6 water samples		

Signed:

Rexona Rahman Head of Customer Services For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

Iss No 19-27265-1 Abermule Business Park 10026414

Project / Site name: Abermule Business Park

Lab Sample Number				1146179	1146180	1146181	1146182	1146183
Sample Reference				BH101	BH102	BH103	BH104	BH105
Sample Number				1	1	1	1	1
Depth (m)				8.00-8.00	4.50-4.50	7.00-7.00	8.50-8.50	5.00-5.00
Date Sampled				30/01/2019	30/01/2019	30/01/2019	30/01/2019	30/01/2019
Time Taken				1400	1330	1300	1230	1150
			>					
	-	Limit of detection	Accreditation Status					
Analytical Parameter	Units	te mit	creditat Status					
(Water Analysis)	ស	đi đ	us					
		3	<u> </u>					
General Inorganics								
оН	pH Units	N/A	ISO 17025	7.3	7.1	6.8	7.4	7.3
Fotal Cyanide	µg/l	10	ISO 17025	< 10	< 10	< 10	< 10	< 10
Free Cyanide	μg/l	10	ISO 17025	< 10	< 10	< 10	< 10	< 10
Sulphate as SO ₄	µg/l	45	ISO 17025	46800	49900	19100	57500	36500
Sulphate as SO ₄	mg/l	0.045	ISO 17025	46.8	49.9	19.1	57.5	36.5
Dissolved Organic Carbon (DOC)	mg/l	0.1	NONE	1.44	_	1.29	_	1.74
Alkalinity	mgCaCO3/I	3	ISO 17025	230	230	140	220	1.74
Hardness - Total	mgCaCO3/I	1	ISO 17025	282	-	182	-	273
	nigeaces	-	150 17025	202		102		275
Phenols by HPLC								
Catechol	µg/l	0.5	NONE	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Resorcinol	μg/l	0.5	NONE	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Ethylphenol & Dimethylphenol	μg/l	0.5	NONE	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Cresols	μg/l	0.5	NONE	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Naphthols	μg/l	0.5	NONE	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Isopropylphenol	μg/l	0.5	NONE	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Phenol	μg/I μg/I	0.5	NONE	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Trimethylphenol	μg/1 μg/l	0.5	NONE	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
mineutyphenoi	µg/1	0.5	NONE	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Total Phenols								
Total Phenols (HPLC)	µg/l	3.5	NONE	< 3.5	< 3.5	< 3.5	< 3.5	< 3.5
	µ9/1	5.5	NONE	< 5.5	< 5.5	< 5.5	< 5.5	< 5.5
Speciated PAHs								
Naphthalene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluorene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Phenanthrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
indeno(1,2,3-cd)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	µg/1 µg/1	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Senzo (gill/per yiene	P3/1	0.01	130 1/023	< 0.01	× 0.01	× 0.01	× 0.01	< 0.01
Fotal PAH								
Total EPA-16 PAHs	µg/l	0.16	ISO 17025	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16

Project / Site name: Abermule Business Park

Your Order No: 14020726								
Lab Sample Number				1146179	1146180	1146181	1146182	1146183
Sample Reference				BH101	BH102	BH103	BH104	BH105
Sample Number				1	1	1	1	1
Depth (m)				8.00-8.00	4.50-4.50	7.00-7.00	8.50-8.50	5.00-5.00
Date Sampled				30/01/2019	30/01/2019	30/01/2019	30/01/2019	30/01/2019
Time Taken				1400	1330	1300	1230	1150
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids	L.				B			
Arsenic (dissolved)	µg/l	0.15	ISO 17025	0.22	0.62	0.17	1.97	< 0.15
Boron (dissolved)	µg/l	10	ISO 17025	63	96	34	36	31
Cadmium (dissolved)	µg/l	0.02	ISO 17025	< 0.02	0.08	< 0.02	< 0.02	0.04
Calcium (dissolved)	mg/l	0.012	ISO 17025	90	-	62	-	92
Chromium (hexavalent)	μg/l	5	ISO 17025	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Chromium (dissolved)	µg/l	0.2	ISO 17025	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Copper (dissolved)	µg/l	0.5	ISO 17025	2.8	2.8	3.2	2.9	2.7
Lead (dissolved)	µg/l	0.2	ISO 17025	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Magnesium (dissolved)	mg/l	0.005	ISO 17025	14	-	6.9	-	10
Mercury (dissolved)	µg/l	0.05	ISO 17025	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Nickel (dissolved)	µg/l	0.5	ISO 17025	1.4	12	1.2	0.9	2.1
Selenium (dissolved)	µg/l	0.6	ISO 17025	0.7	< 0.6	< 0.6	< 0.6	0.7
Zinc (dissolved)	µg/l	0.5	ISO 17025	3.9	5.6	4.0	3.6	3.5
Monoaromatics & Oxygenates Benzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >C5 - C6	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C10 - C12	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C12 - C16	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C16 - C21	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C21 - C35	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C35)	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C5 - C7	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C7 - C8	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C10 - C12	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C12 - C16	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C16 - C21	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C21 - C35	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C35)	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10

U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: Abermule Business Park

Your Order No: 14020726						
Lab Sample Number				1146184		
Sample Reference				BH106		
Sample Number				1		
Depth (m)				3.00-3.00		
Date Sampled						
Time Taken				1100		
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status			

General Inorganics

pН	pH Units	N/A	ISO 17025	7.1		
Total Cyanide	µg/l	10	ISO 17025	< 10		
Free Cyanide	µg/l	10	ISO 17025	< 10		
Sulphate as SO₄	µg/l	45	ISO 17025	27500		
Sulphate as SO₄	mg/l	0.045	ISO 17025	27.5		
Dissolved Organic Carbon (DOC)	mg/l	0.1	NONE	-		
Alkalinity	mgCaCO3/I	3	ISO 17025	160		
Hardness - Total	mgCaCO3/l	1	ISO 17025	-		

Phenols by HPLC

Catechol	µg/l	0.5	NONE	< 0.5		
Resorcinol	µg/l	0.5	NONE	< 0.5		
Ethylphenol & Dimethylphenol	µg/l	0.5	NONE	< 0.5		
Cresols	µg/l	0.5	NONE	< 0.5		
Naphthols	µg/l	0.5	NONE	< 0.5		
Isopropylphenol	µg/l	0.5	NONE	< 0.5		
Phenol	µg/l	0.5	NONE	< 0.5		
Trimethylphenol	µg/l	0.5	NONE	< 0.5		

Total Phenols

Total Phenols (HPLC)	µg/l	3.5	NONE	< 3.5		

S	peciated	PAHs

Naphthalene	µg/l	0.01	ISO 17025	< 0.01		
Acenaphthylene	µg/l	0.01	ISO 17025	< 0.01		
Acenaphthene	µg/l	0.01	ISO 17025	< 0.01		
Fluorene	µg/l	0.01	ISO 17025	< 0.01		
Phenanthrene	µg/l	0.01	ISO 17025	< 0.01		
Anthracene	µg/l	0.01	ISO 17025	< 0.01		
Fluoranthene	µg/l	0.01	ISO 17025	< 0.01		
Pyrene	µg/l	0.01	ISO 17025	< 0.01		
Benzo(a)anthracene	µg/l	0.01	ISO 17025	< 0.01		
Chrysene	µg/l	0.01	ISO 17025	< 0.01		
Benzo(b)fluoranthene	µg/l	0.01	ISO 17025	< 0.01		
Benzo(k)fluoranthene	µg/l	0.01	ISO 17025	< 0.01		
Benzo(a)pyrene	µg/l	0.01	ISO 17025	< 0.01		
Indeno(1,2,3-cd)pyrene	µg/l	0.01	ISO 17025	< 0.01		
Dibenz(a,h)anthracene	µg/l	0.01	ISO 17025	< 0.01		
Benzo(ghi)perylene	µg/l	0.01	ISO 17025	< 0.01		

Total PAH						
Total EPA-16 PAHs	µg/l	0.16	ISO 17025	< 0.16		

Project / Site name: Abermule Business Park

Lab Sample Number				1146184			
Sample Reference				BH106			
Sample Number				1			
Depth (m)				3.00-3.00			
Date Sampled	• • •						
Time Taken		1100					
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status				
Heavy Metals / Metalloids							
Arsenic (dissolved)	µg/l	0.15	ISO 17025	0.31			
Boron (dissolved)	µg/l	10	ISO 17025	37			
Cadmium (dissolved)	µg/l	0.02	ISO 17025	< 0.02			
Calcium (dissolved)	mg/l	0.012	ISO 17025	-			
Chromium (hexavalent)	µg/l	5	ISO 17025	< 5.0			
Chromium (dissolved)	µg/l	0.2	ISO 17025	< 0.2			
Copper (dissolved)	µg/l	0.5	ISO 17025	3.3			
Lead (dissolved)	µg/l	0.2	ISO 17025	< 0.2			
Magnesium (dissolved)	mg/l	0.005	ISO 17025	-			
Mercury (dissolved)	µg/l	0.05	ISO 17025	< 0.05			
Nickel (dissolved)	µg/l	0.5	ISO 17025	4.1			
Selenium (dissolved)	µg/l	0.6	ISO 17025	0.7			
Zinc (dissolved)	µg/l	0.5	ISO 17025	8.7			

Monoaromatics & Oxygenates

Benzene	µg/l	1	ISO 17025	< 1.0		
Toluene	µg/l	1	ISO 17025	< 1.0		
Ethylbenzene	µg/l	1	ISO 17025	< 1.0		
p & m-xylene	µg/l	1	ISO 17025	< 1.0		
o-xylene	µg/l	1	ISO 17025	< 1.0		
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	< 1.0		

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >C5 - C6	µg/l	1	ISO 17025	< 1.0		
TPH-CWG - Aliphatic >C6 - C8	µg/l	1	ISO 17025	< 1.0		
TPH-CWG - Aliphatic >C8 - C10	µg/l	1	ISO 17025	< 1.0		
TPH-CWG - Aliphatic >C10 - C12	µg/l	10	NONE	< 10		
TPH-CWG - Aliphatic >C12 - C16	µg/l	10	NONE	< 10		
TPH-CWG - Aliphatic >C16 - C21	µg/l	10	NONE	< 10		
TPH-CWG - Aliphatic >C21 - C35	µg/l	10	NONE	< 10		
TPH-CWG - Aliphatic (C5 - C35)	µg/l	10	NONE	< 10		
TPH-CWG - Aromatic >C5 - C7	µg/l	1	ISO 17025	< 1.0		
TPH-CWG - Aromatic >C7 - C8	µg/l	1	ISO 17025	< 1.0		
TPH-CWG - Aromatic >C8 - C10	µg/l	1	ISO 17025	< 1.0		
TPH-CWG - Aromatic >C10 - C12	µg/l	10	NONE	< 10		
TPH-CWG - Aromatic >C12 - C16	µg/l	10	NONE	< 10		
TPH-CWG - Aromatic >C16 - C21	µg/l	10	NONE	< 10		
TPH-CWG - Aromatic >C21 - C35	µg/l	10	NONE	< 10		
TPH-CWG - Aromatic (C5 - C35)	µg/l	10	NONE	< 10		

U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: Abermule Business Park

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

				1	1
Analytical Test Name	cal Test Name Analytical Method Description Analytical Method Reference			Wet / Dry Analysis	Accreditation Status
Alkalinity in Water (by discreet analyser)	Determination of Alkalinity by discreet analyser (colorimetry). Accredited matrices: SW, PW, GW.	In house method based on MEWAM & USEPA Method 310.2.	L082-PL	W	ISO 17025
Boron in water	Determination of boron in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM	L039-PL	W	ISO 17025
BTEX and MTBE in water (Monoaromatics)	,			W	ISO 17025
Dissolved Organic Carbon in water	Determination of dissolved inorganic carbon in water by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE
Free cyanide in water	Determination of free cyanide by distillation followed by colorimetry.Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	ISO 17025
Hexavalent chromium in water	Determination of hexavalent chromium in water by In-house method by continuous flow acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.		L080-PL	W	ISO 17025
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, AI=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(AI, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
pH at 20oC in water (automated)	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	W	ISO 17025
Phenols, speciated, in water, by HPLC	Determination of speciated phenols by HPLC.	In house method based on Blue Book Method.	L030-PL	W	NONE
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	Ć-MS		w	ISO 17025
Sulphate in water	Determination of sulphate in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW, PrW.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Total cyanide in water	Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	ISO 17025
Total Hardness of water	Determination of hardness in waters by calculation from calcium and magnesium. Accredited Matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045-PL	W	ISO 17025
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	W	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Sample ID	Other_ID	Sample Type	Job	Sample Number	Sample Deviation Code	test_name	test_ref	Test Deviation code
BH101	1	W	19-27265	1146179	с	pH at 20oC in water (automated)	L099-PL	С
BH102	1	W	19-27265	1146180	С	pH at 20oC in water (automated)	L099-PL	С
BH103	1	W	19-27265	1146181	с	pH at 20oC in water (automated)	L099-PL	С
BH104	1	W	19-27265	1146182	С	pH at 20oC in water (automated)	L099-PL	С
BH105	1	W	19-27265	1146183	С	pH at 20oC in water (automated)	L099-PL	C
BH106	1	W	19-27265	1146184	С	pH at 20oC in water (automated)	L099-PL	С

Client: Lisa Contestabile PCC Highways, Transport & Recycling County Hall Llandrindod Wells Powys, LD1 5LG

Copy to:

Date Reported: 08/10/2018

Lab Reference: 180032

TEST REPORT

ASBESTOS FIBRE IDENTIFICATION TESTED BY IN HOUSE METHOD IN ACCORDANCE WITH HSG 248 (ASBESTOS: THE ANALYSTS' GUIDE FOR SAMPLING, ANALYSIS AND CLEARANCE PROCEDURES) 2005

AND CLEARANCE PROCEDORES/2005						
Site	Abermule Business Park	bermule Business Park				
Building Ref.	N/A	I/A				
Sample Location	Debris in soil under fencing line, as p	Debris in soil under fencing line, as plans				
Date Sampled	08/10/2018	Surveyor/Sampler	Tracy Gittens			
Date Received	08/10/2018	Event No.	0			
Date Tested	08/10/2018	Analyst	Eleri Halliday			

Product type	Fibre Identification
Board	Amosite
	Chrysotile

CHRYSOTILE = White Asbestos, AMOSITE = Brown Asbestos, CROCIDOLITE = Blue Asbestos ANTHOPHYLLITE, TREMOLITE, ACTINOLITE = Minor Asbestos Types

The laboratory takes no responsibility for sampling undertaken by non-laboratory staff, or for the interpretation of results. UKAS accreditation is for analysis only.

Remarks:

Alliday

Signed:

Authorised Signatories:

M. Myhill, Asbestos Officer <u>E. Halliday, Asbestos Officer</u> T. Gittens, Asbestos Officer

This Report relates only to the samples tested. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

 This report is invalid if altered in any way. This report may not be reproduced except in full,

 FM24a Issue No:3 Issue Date:
 02/07/18
 Page 1 of 1

Client: **PCC Highways County Hall** Llandrindod Wells Powys LD1 5LG Copy to:

Date Reported: 23/10/2018 Lab Reference: 180041

TEST REPORT

ASBESTOS FIBRE IDENTIFICATION

TESTED BY IN HOUSE METHOD IN ACCORDANCE WITH HSG 248 (ASBESTOS: THE ANALYSTS' GUIDE FOR SAMPLING, ANALYSIS AND CLEARANCE PROCEDURES) 2005

	ANALETSIS AND CEE		, 2003
Site	Abermule Busines Park		
Building Ref.	N/A		
Sample Location	Debris in spoil heap (as plans)		
Date Sampled	18/10/2018	Surveyor/Sampler	Tracy Gittens
Date Received	18/10/2018	Event No.	
Date Tested	22/10/2018	Analyst	Tracy Gittens

Product type	Fibre Identification
Cement	Chrysotile

CHRYSOTILE = White Asbestos, AMOSITE = Brown Asbestos, CROCIDOLITE = Blue Asbestos ANTHOPHYLLITE, TREMOLITE, ACTINOLITE = Minor Asbestos Types

The laboratory takes no responsibility for sampling undertaken by non-laboratory staff, or for the interpretation of results. UKAS accreditation is for analysis only.

Remarks:

T J Witten Signed:

Authorised Signatories:

T. Gittens, Asbestos Officer

M. Myhill, Asbestos Officer E. Halliday, Asbestos Officer This Report relates only to the samples tested. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

This report is invalid if altered in any way. This report may not be reproduced except in full, FM24a Issue No:3 Issue Date: 02/07/18 Page 1 of 1

Client: **PCC Highways County Hall** Llandrindod Wells Powys LD1 5LG

Copy to:

Date Reported: 23/10/2018 Lab Reference: 180042

TEST REPORT

ASBESTOS FIBRE IDENTIFICATION

TESTED BY IN HOUSE METHOD IN ACCORDANCE WITH HSG 248 (ASBESTOS: THE ANALYSTS' GUIDE FOR SAMPLING, ANALYSIS AND CLEARANCE PROCEDURES) 2005

	ANALISIS AND CEL		, 2003
Site	Abermule Busines Park		
Building Ref.	N/A		
Sample Location	Debris in spoil heap (as plans)		
Date Sampled	18/10/2018	Surveyor/Sampler	Tracy Gittens
Date Received	18/10/2018	Event No.	
Date Tested	22/10/2018	Analyst	Tracy Gittens

Product type	Fibre Identification
Cement	No asbestos detected

CHRYSOTILE = White Asbestos, AMOSITE = Brown Asbestos, CROCIDOLITE = Blue Asbestos ANTHOPHYLLITE, TREMOLITE, ACTINOLITE = Minor Asbestos Types

The laboratory takes no responsibility for sampling undertaken by non-laboratory staff, or for the interpretation of results. UKAS accreditation is for analysis only.

Remarks: T J Witch Signed:

Authorised Signatories:

T. Gittens, Asbestos Officer

M. Myhill, Asbestos Officer E. Halliday, Asbestos Officer This Report relates only to the samples tested. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

This report is invalid if altered in any way. This report may not be reproduced except in full, FM24a Issue No:3 Issue Date: 02/07/18 Page 1 of 1

Client: **PCC Highways County Hall** Llandrindod Wells Powys LD1 5LG Copy to:

Date Reported: 23/10/2018 Lab Reference: 180043

TEST REPORT

ASBESTOS FIBRE IDENTIFICATION

TESTED BY IN HOUSE METHOD IN ACCORDANCE WITH HSG 248 (ASBESTOS: THE ANALYSTS' GUIDE FOR SAMPLING, ANALYSIS AND CLEARANCE PROCEDURES) 2005

	ANALET SIS AND CEE		, 2003
Site	Abermule Busines Park		
Building Ref.	N/A		
Sample Location	Debris in spoil heap (as plans)		
Date Sampled	18/10/2018	Surveyor/Sampler	Tracy Gittens
Date Received	18/10/2018	Event No.	
Date Tested	22/10/2018	Analyst	Tracy Gittens

Product type	Fibre Identification
Cement	Chrysotile

CHRYSOTILE = White Asbestos, AMOSITE = Brown Asbestos, CROCIDOLITE = Blue Asbestos ANTHOPHYLLITE, TREMOLITE, ACTINOLITE = Minor Asbestos Types

The laboratory takes no responsibility for sampling undertaken by non-laboratory staff, or for the interpretation of results. UKAS accreditation is for analysis only.

Remarks:

T J Witten Signed:

Authorised Signatories:

T. Gittens, Asbestos Officer

M. Myhill, Asbestos Officer E. Halliday, Asbestos Officer This Report relates only to the samples tested. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

> This report is invalid if altered in any way. This report may not be reproduced except in full, FM24a Issue No:3 Issue Date: 02/07/18 Page 1 of 1

Property I.D.	Abermule Business Park
Sample Reference No.	180041
Page No.	Page 1 of 2

GENERAL DETAILS

Building	:	None	Flo	or	:	Ground
Room/Area	:	As plans		Level	of	Identification
Sample description	:	Debris in spoil heap			Sa	ampled

ASSESSMENT DETAILS

Asbestos Type	:	Chrysotile		Accessibility	:	Easy
Product Type	:	Cement	:	Friability	:	Low
Extent	•	Unknown	•	Material Risk Assessment * (From page 2)	•	Low
Action Assessment	:	Remove under controlled conditions		Recommended Timescale		Pre-works
Works to the material		An assessment needs to be undertaken by a competent person in line with HSE Asbestos Essentials Task Manual Sheet A0 each time works are required.				

*This is an assessment undertaken by the surveyor when sampling on site. A formal assessment will need to be undertaken by the Premises Manager.

Property I.D.	Abermule Business Park
Sample Reference No.	180041
Page No.	Page 2 of 2

MATERIAL RISK ASSESSMENT REPORT

		Value	Score	
Product Type	Asbestos-reinforced composites (plastic, resin, mastics, roofing felts, vinyl floor tiles, semi-rigid paints or decorative finishes, asbestos cement)	1	1	
	Asbestos insulating board, mill boards, other low density insulation boards, asbestos textiles, gaskets, ropes and woven textiles, asbestos paper and felt.	2		
	Thermal insulation (pipe and boiler lagging), sprayed asbestos, loose asbestos, asbestos mattresses and packing.	3		
Damage/	Good Condition: No visible damage	0		
Deterioration	Low Damage: A few scratches or surface marks; broken edges on boards, tiles etc.	1		
	Medium Damage: Significant breakage of materials or several small areas where material has been damaged revealing loose fibres.	2		
	High Damage: High damage or delamination of materials, sprays and thermal insulation. Visible asbestos debris.	3	3	
Surface Treatment	Composite materials containing asbestos: Reinforced plastics, resins, vinyl tiles.	0		
	Enclosed sprays and lagging, asbestos cement sheets, AIB (with exposed face painted or encapsulated), etc.	1	1	
	Unsealed AIB, or encapsulated lagging and sprays	2		
	Unsealed lagging and sprays	3		
Asbestos	Chrysotile (White)	1	1	
Туре	Amosite (Brown) Crocidolite (Blue)	2 3		
Material Score	(Sum of the Material Score)	Total Score	6	
Material Risk	(Very low = 4 or less, Low = 5 - 6, Medium = 7 - 9, High = 10 or more)	, High = Low		

GENERAL DETAILS AND COMMENTS

Comments : It is likely that this material has been placed on the site from elsewhere and therefore would not necessarily be found at depth. It would be advisable to undertake further ground investigations in the area to quantify the levels present in the spoil heap and whether there has been any migration into the ground below. Ground investigations for asbestos contamination should be designed, undertaken & evaluated by competent specialists who have an appropriate level of geoenvironmental & asbestos qualifications, skills & experience

Recommendations : Remove under controlled conditions

Property I.D.	Abermule Business Park
Sample Reference No.	180042
Page No.	Page 1 of 1

GENERAL DETAILS

Building	:	None F	loor	I	:	Ground
Room/Area	:	As plans		Level	of Id	lentification
Sample description	:	Debris in spoil heap			San	npled

ASSESSMENT DETAILS

Asbestos Type		No asbestos detected	•	Accessibility		Easy
Product Type	:	Cement		Friability	:	Low
Extent	•	Not applicable	•	Material Risk Assessment * (From page 2)	•	Not applicable
Action Assessment	:	Not applicable	:	Recommended Timescale	:	Not applicable
Not applicable	:	Not applicable				

*This is an assessment undertaken by the surveyor when sampling on site. A formal assessment will need to be undertaken by the Premises Manager.

Property I.D.	Abermule Business Park
Sample Reference No.	180043
Page No.	Page 1 of 2

GENERAL DETAILS

Building	:	None F	Flo	or	:	Ground
Room/Area	:	As plans		Level	of I	dentification
Sample description	:	Debris in spoil heap			Sa	mpled

ASSESSMENT DETAILS

Asbestos Type	:	Chrysotile	:	Accessibility	:	Easy	
Product Type	:	Cement	:	Friability	:	Low	
Extent	:	Unknown	•	Material Risk Assessment * (From page 2)		Low	
Action Assessment	•	Remove under controlled conditions	•	Recommended Timescale		Pre-works	
Works to the material		An assessment needs to be undertaken by a competent person in line with HSE Asbestos Essentials Task Manual Sheet A0 each time works are required.					

*This is an assessment undertaken by the surveyor when sampling on site. A formal assessment will need to be undertaken by the Premises Manager.

Property I.D.	Abermule Business Park
Sample Reference No.	180043
Page No.	Page 2 of 2

MATERIAL RISK ASSESSMENT REPORT

		Value	Score
Product Type	Asbestos-reinforced composites (plastic, resin, mastics, roofing felts, vinyl floor tiles, semi-rigid paints or decorative finishes, asbestos cement)	1	1
	Asbestos insulating board, mill boards, other low density insulation boards, asbestos textiles, gaskets, ropes and woven textiles, asbestos paper and felt.	2	
	Thermal insulation (pipe and boiler lagging), sprayed asbestos, loose asbestos, asbestos mattresses and packing.	3	
Damage/	Good Condition: No visible damage	0	
Deterioration	Low Damage: A few scratches or surface marks; broken edges on boards, tiles etc.	1	
	Medium Damage: Significant breakage of materials or several small areas where material has been damaged revealing loose fibres.	2	
	High Damage: High damage or delamination of materials, sprays and thermal insulation. Visible asbestos debris.	3	3
Surface Treatment	Composite materials containing asbestos: Reinforced plastics, resins, vinyl tiles.	0	
	Enclosed sprays and lagging, asbestos cement sheets, AIB (with exposed face painted or encapsulated), etc.	1	1
	Unsealed AIB, or encapsulated lagging and sprays	2	
	Unsealed lagging and sprays	3	
Asbestos	Chrysotile (White)	1	1
Туре	Amosite (Brown)	2	
	Crocidolite (Blue)	3	
Material Score	(Sum of the Material Score)	Total Score	6
Material Risk	(Very low = 4 or less, Low = 5 - 6, Medium = 7 - 9, High = 10 or more)	Lo	W

GENERAL DETAILS AND COMMENTS

Comments : It is likely that this material has been placed on the site from elsewhere and therefore would not necessarily be found at depth. It would be advisable to undertake further ground investigations in the area to quantify the levels present in the spoil heap and whether there has been any migration into the ground below. Ground investigations for asbestos contamination should be designed, undertaken & evaluated by competent specialists who have an appropriate level of geoenvironmental & asbestos qualifications, skills & experience

Recommendations : Remove under controlled conditions

APPENDIX I HazWaste Assessment

Job name	Abermule Business Park - Stockpile Samples V2
Comments	
Classification Engine	WM3 1st Edition v1.1, May 2018
Waste Stream	Abermule Business Park
Created by	Fiona Waldron (Arcadis Consulting (UK) Ltd)
Created on	05/03/2019

Determinand (laboratory concentrations)	Unit	HTP01	HTP02	HTP03	HTP04	HTP05	HTP06	HTP07	HTP08
Classification Result		Non Hazardous	Non Hazardous	Non Hazardous	Non Hazardous	Non Hazardous	Non Hazardous	Non Hazardous	Non Hazardous
Depth	m	0.00-0.20	0.00-0.20	0.00-0.20	0.00-0.20	0.00-0.20	0.00-0.20	0.00-0.20	0.00-0.20
moisture {no correction}	%	16	16	6.2	14	15	22	15	27
asbestos	mg/kg	Not detected	Not detected	Not detected	Not detected	Not detected	Not detected	Not detected	Not detected
рН	pН	6.6	6.5	7.7	7.9	7.7	7.1	7.3	7.5
cyanides (salts of hydrogen cyanide with the exception o	img/kg	<1.884	<1.884	<1.884	<1.884	<1.884	<1.884	<1.884	<1.884
phenol	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1
naphthalene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
acenaphthylene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
acenaphthene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05
fluorene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05
phenanthrene	mg/kg	<0.05	<0.05	<0.05	0.33	< 0.05	0.91	< 0.05	0.67
anthracene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05	0.32	<0.05	0.19
fluoranthene	mg/kg	<0.05	<0.05	0.87	1.6	< 0.05	4.8	0.3	
pyrene	mg/kg	<0.05	<0.05	0.74		<0.05	4.6		
benzo[a]anthracene	mg/kg	<0.05	<0.05	0.45	0.83	<0.05	2.2	<0.05	1.1
chrysene	mg/kg	<0.05	<0.05	0.54	0.9	< 0.05	2.3	< 0.05	1.1
benzo[b]fluoranthene	mg/kg	<0.05	<0.05	0.74	1.4	< 0.05	3.6	< 0.05	1.5
benzo[k]fluoranthene	mg/kg	<0.05	<0.05	0.36	0.69	< 0.05	1.2	< 0.05	0.73
benzo[a]pyrene; benzo[def]chrysene	mg/kg	<0.05	<0.05	0.68	1.5	< 0.05	3.1	< 0.05	1.4
indeno[123-cd]pyrene	mg/kg	<0.05	<0.05	0.42	0.89	< 0.05	1.9	< 0.05	0.84
dibenz[a,h]anthracene	mg/kg	<0.05	<0.05	<0.05	<0.05	< 0.05	0.45	< 0.05	< 0.05
benzo[ghi]perylene	mg/kg	<0.05	<0.05	0.49	1.2	<0.05	2.2	<0.05	0.95
arsenic {arsenic trioxide}	mg/kg	9.1	10	4	8	5.2	8.3	12	
boron {boron tribromide/trichloride/trifluoride (combined)]	mg/kg	1	0.9	1.1	1.2	0.5	3	1.1	
cadmium {cadmium sulfide}	mg/kg	<0.257	<0.257	<0.257	<0.257	<0.257	<0.257	<0.257	1.2
chromium in chromium(VI) compounds {chromium(VI) or	mg/kg	<7.692	<7.692	<7.692	<7.692	<7.692	<7.692	<7.692	<7.692
chromium in chromium(III) compounds {chromium(III) ox	mg/kg	35	34	40	32	31	33		
copper {dicopper oxide; copper (I) oxide}	mg/kg	23	23				36		
lead {lead chromate}	mg/kg	24	26	26	51	22	43	32	55
mercury {mercury dichloride}	mg/kg	<0.406	<0.406	<0.406	<0.406	<0.406	<0.406	<0.406	<0.406
nickel {nickel dihydroxide}	mg/kg	32	32	32		28	31	39	32
selenium (selenium compounds with the exception of car	mg/kg	<2.554	<2.554	<2.554	<2.554	<2.554	<2.554	<2.554	<2.554
zinc {zinc chromate}	mg/kg	110	110	77	110	120	150	140	290
benzene	mg/kg	<0.001	<0.001	<0.001	<0.001	< 0.001	<0.001	<0.001	<0.001
toluene	mg/kg	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
ethylbenzene	mg/kg	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
o-xylene; [1] p-xylene; [2] m-xylene; [3] xylene [4]	mg/kg	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropa	mg/kg	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
TPH (C6 to C40) petroleum group	mg/kg	<10	<10	<10	16	<10	21	<10	35
confirm TPH has NOT arisen from diesel or petrol	n/a								

Notes:

HP3 Flamable has been changed to non hazardous for TPH at concentrations <1000 mg/kg. Where a substance has a HP3 classification, it is assumed that enough material is present for ignition to occur, i.e. that the chemical is in its raw from, not within the soil matrix. In the case of soils, ignition is unlikely at concentrations <1000 mg/kg. However, this would need to be confirmed by the operator of the landfill where the waste is intended to be taken.

Waste Classification Report

Job name			
Abermule Business Park - Stockpile Sampl	es V2		
Description/Comments			
Project			
Abermule Busi			
Site			
Abermule			
Related Documents			
# Name	Description		
None			
Waste Stream Template			
Abermule Business Park			
Classified by			
Name: Fiona Waldron	Company: Arcadis Consulting (UK) Ltd		
Date:	1st Floor, 2 Glass Wharf		
06 Mar 2019 08:20 GMT	Temple Quay		
Telephone:	Bristol		
0117 3721231	BS2 0FR		
Report			
Created by: Fiona Waldron			
Created date: 06 Mar 2019 08:20 GMT			
Job summary			
# Sample Name	Depth [m] Classification Result	Hazard properties	Page

#	Sample Name	Depth [m]	Classification Result	Hazard properties	Page
1	HTP01	0.00-0.20	Non Hazardous		3
2	HTP02	0.00-0.20	Non Hazardous		6
3	HTP03	0.00-0.20	Non Hazardous		9
4	HTP04	0.00-0.20	Non Hazardous		12
5	HTP05	0.00-0.20	Non Hazardous		15
6	HTP06	0.00-0.20	Non Hazardous		18
7	HTP07	0.00-0.20	Non Hazardous		21
8	HTP08	0.00-0.20	Non Hazardous		24

Appendices Appendix A: Classifier defined and non CLP determinands

Page 27

Appendices	Page
Appendix B: Rationale for selection of metal species	28
Appendix C: Version	29

Classification of sample: HTP01

Sample details

October 10 Nicola		
Sample Name:	LoW Code:	
HTP01	Chapter:	17: Construction and Demolition Wastes (including excavated solution)
Sample Depth:		from contaminated sites)
0.00-0.20 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
16%		
(no correction)		
(

Hazard properties

None identified

Determinands

Moisture content: 16% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound o	conc.	Classification value	MC Applied	Conc. Not Used
1	9	pН		PH	_	6.6	pН		6.6	рН	6.6 pH		
2	4	cyanides { salts of exception of complete ferricyanides and methods and methods are specified elsewhere 006-007-00-5	ex cyanides such as nercuric oxycyanide	s ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< th=""></lod<>
3		phenol	000 000 7	400.05.0		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< th=""></lod<>
		604-001-00-2	203-632-7	108-95-2									
4			202-049-5	91-20-3	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
5	9	acenaphthylene	205-917-1	208-96-8	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
6		acenaphthene				<0.05	mg/kg		<0.05	ma/ka	<0.000005 %		<lod< td=""></lod<>
			201-469-6	83-32-9								_	
7	8	fluorene	201-695-5	86-73-7	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
8	0	phenanthrene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			201-581-5	85-01-8								_	
9	۲	anthracene	204-371-1	120-12-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		fluoranthene	204-371-1	120-12-7									
10			205-912-4	206-44-0		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
11	0	pyrene	204-927-3	129-00-0		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
12		benzo[a]anthracene	e			<0.05	mg/kg		<0.05	ma/ka	<0.000005 %		<lod< td=""></lod<>
12		601-033-00-9	200-280-6	56-55-3					<0.00	ing/kg			
13		chrysene	005 000 4	640.04.0		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
\vdash		601-048-00-0 benzo[b]fluoranther		218-01-9	-								
14				205-99-2	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>

#		Determinand	CLP Note	User entered	l data	Conv. Factor	Compound conc.	Classification value	Applied	Conc. Not Used
		CLP index number EC Number CAS Number	CLP						MC	
15		benzo[k]fluoranthene		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-036-00-5 205-916-6 207-08-9	1							
16		benzo[a]pyrene; benzo[def]chrysene		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-032-00-3 200-028-5 50-32-8							_	
17	۲	indeno[123-cd]pyrene		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
		205-893-2 193-39-5							_	
18		dibenz[a,h]anthracene 601-041-00-2 200-181-8 53-70-3		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
19	۵	benzo[ghi]perylene 205-883-8 191-24-2		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
	•	arsenic { arsenic trioxide }							1	
20	4	033-003-00-0 215-481-4 1327-53-3		9.1	mg/kg	1.32	12.015 mg/kg	0.0012 %		
			-						-	
21	4	boron { [®] boron tribromide/trichloride/trifluoride (combined) }		1	maller	13.43	13.43 mg/kg	0.00404.04		
21		10294-33-4, 10294-34-5,		I	шу/ку	13.43	13.43 mg/kg	0.00134 %		
	-	7637-07-2	-							
22	4	cadmium { cadmium sulfide } 048-010-00-4 215-147-8 1306-23-6	1	<0.2	mg/kg	1.285	<0.257 mg/kg	<0.00002 %		<lod< td=""></lod<>
23	4	chromium in chromium(VI) compounds {		<4	mg/kg	1.923	<7.692 mg/kg	<0.000769 %		<lod< td=""></lod<>
		024-001-00-0 215-607-8 1333-82-0							ļ	
24	4	chromium in chromium(III) compounds { [®] <mark>chromium(III)</mark> oxide }		35	mg/kg	1.462	51.154 mg/kg	0.00512 %		
		215-160-9 1308-38-9	1							
25	4	copper { dicopper oxide; copper (I) oxide }		23	mg/kg	1.126	25.895 mg/kg	0.00259 %		
		029-002-00-X 215-270-7 1317-39-1								
26	4	lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6	1	24	mg/kg	1.56	37.436 mg/kg	0.0024 %		
27	4	mercury { mercury dichloride }		<0.3	mg/kg	1.353	<0.406 mg/kg	<0.0000406 %	Ľ	<lod< td=""></lod<>
		080-010-00-X 231-299-8 7487-94-7							-	
28	4	nickel { nickel dihydroxide } 028-008-00-X 235-008-5 [1] 12054-48-7 [1] 234-348-1 [2] 11113-74-9 [2]		32	mg/kg	1.579	50.544 mg/kg	0.00505 %		
29	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<1	mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< td=""></lod<>
30	4	zinc { zinc chromate }		110	mg/kg	2.774	305.156 mg/kg	0.0305 %		
31		benzene	1	<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
51		601-020-00-8 200-753-7 71-43-2		<0.001	mg/kg		<0.001 mg/kg	<u><u> </u></u>		
32		toluene 601-021-00-3 203-625-9 108-88-3		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
33		ethylbenzene	ſ	<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
- 33		601-023-00-4 202-849-4 100-41-4		<0.001	mg/kg		<0.001 mg/kg	<0.000001 %		
34		o-xylene; [1] p-xylene; [2] m-xylene; [3] xylene [4] 601-022-00-9 202-422-2 [1] 95-47-6 [1] 203-396-5 [2] 106-42-3 [2] 203-576-3 [3] 108-38-3 [3] 215-535-7 [4] 1330-20-7 [4]		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
35		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane 603-181-00-X 216-653-1 1634-04-4		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
36	۵	TPH (C6 to C40) petroleum group		<10	mg/kg		<10 mg/kg	<0.001 %		<lod< td=""></lod<>
							Total:	0.0507 %	1	

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: HTP02

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name: 1TP02 Sample Depth: J.00-0.20 m Moisture content: 16% no correction)	 17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)
no correction)	

Hazard properties

None identified

Determinands

Moisture content: 16% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	8	pН		PH		6.5	рН		6.5	pН	6.5 pH		
2	4	exception of compl	of hydrogen cyanid ex cyanides such as nercuric oxycyanide e in this Annex }	s ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< th=""></lod<>
3		phenol				<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< th=""></lod<>
			203-632-7	108-95-2	-							-	
4		naphthalene 601-052-00-2	202-049-5	91-20-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
5	-	acenaphthylene	205-917-1	208-96-8		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %	Ĺ	<lod< td=""></lod<>
6	8				<0.05	mg/kg		<0.05	ma/ka	<0.000005 %	Ē	<lod< td=""></lod<>	
			201-469-6	83-32-9		<0.05	пу/ку		<0.03	шу/ку	<0.000003 /8		LOD
7	Θ	fluorene	201-695-5	86-73-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
8	8	phenanthrene	201-581-5	85-01-8		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
9	۲	anthracene	204-371-1	120-12-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
10	0	fluoranthene	205-912-4	206-44-0		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %	Ē	<lod< td=""></lod<>
11	0	pyrene	204-927-3	129-00-0		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
12		benzo[a]anthracen	e	56-55-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
13		chrysene		218-01-9		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
14		benzo[b]fluoranthe	ne			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %	L	<lod< td=""></lod<>
		601-034-00-4	205-911-9	205-99-2									

#		Determinand	CLP Note	User entered	data	Conv. Factor	Compound conc.	Classification value	Applied	Conc. Not Used
		CLP index number EC Number CAS Number	CLF						MC	
15		benzo[k]fluoranthene 601-036-00-5 205-916-6 207-08-9	-	<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
40		benzo[a]pyrene; benzo[def]chrysene		0.05			0.05	0.000005.0/		1.00
16		601-032-00-3 200-028-5 50-32-8		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
17	8	indeno[123-cd]pyrene		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
		205-893-2 193-39-5			iiig/itg					.202
18		dibenz[a,h]anthracene 601-041-00-2 200-181-8 53-70-3		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
19	8	benzo[ghi]perylene 205-883-8 191-24-2		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
	8	arsenic { arsenic trioxide }							H	
20	*	033-003-00-0 215-481-4 1327-53-3		10	mg/kg	1.32	13.203 mg/kg	0.00132 %		
	4	boron { • boron tribromide/trichloride/trifluoride								
21		(combined) }		0.9	mg/kg	13.43	12.087 mg/kg	0.00121 %		
22	4	cadmium { cadmium sulfide }	1	<0.2	ma/ka	1.285	<0.257 mg/kg	<0.00002 %		<lod< td=""></lod<>
		048-010-00-4 215-147-8 1306-23-6			5 5					_
23	4	chromium in chromium(VI) compounds { chromium(VI) oxide }	_	<4	mg/kg	1.923	<7.692 mg/kg	<0.000769 %		<lod< td=""></lod<>
		024-001-00-0 215-607-8 1333-82-0								
24	4	chromium in chromium(III) compounds { <pre> chromium(III) oxide } </pre>		34	mg/kg	1.462	49.693 mg/kg	0.00497 %		
		215-160-9 1308-38-9								
25	4	copper { dicopper oxide; copper (I) oxide }		23	mg/kg	1.126	25.895 mg/kg	0.00259 %		
	*	029-002-00-X 215-270-7 1317-39-1 lead { lead chromate }							\vdash	
26	*	082-004-00-2 231-846-0 7758-97-6	1	26	mg/kg	1.56	40.555 mg/kg	0.0026 %		
27	6	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7	_	<0.3	mg/kg	1.353	<0.406 mg/kg	<0.0000406 %		<lod< td=""></lod<>
28	4	nickel { nickel dihydroxide } 028-008-00-X 235-008-5 [1] 12054-48-7 [1]		32	mg/kg	1.579	50.544 mg/kg	0.00505 %		
29	*	234-348-1 [2] [1113-74-9 [2] selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<1	mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< td=""></lod<>
		034-002-00-8 zinc { <mark>zinc chromate</mark> }							H	
30	*	024-007-00-3		110	mg/kg	2.774	305.156 mg/kg	0.0305 %		
31		benzene 601-020-00-8 200-753-7 71-43-2		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
32		toluene 601-021-00-3 203-625-9 108-88-3	-	<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
33	8	ethylbenzene	t	<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
		601-023-00-4 202-849-4 100-41-4 o-xylene; [1] p-xylene; [2] m-xylene; [3] xylene [4]	-						\vdash	
34		601-022-00-9 202-422-2 [1] 95-47-6 [1] 203-396-5 [2] 106-42-3 [2] 203-576-3 [3] 108-38-3 [3] 215-535-7 [4] 1330-20-7 [4]		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
35		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane 603-181-00-X 216-653-1 1634-04-4	_	<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
36	8	TPH (C6 to C40) petroleum group		<10	mg/kg		<10 mg/kg	<0.001 %		<lod< td=""></lod<>
<u> </u>		1				L L	Total:	0.0507 %	H	

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
Θ	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: HTP03

Sample details

LoW Code: Chapter:	17: Construction and Demolition Wastes (including excavated so
Chapter:	17: Construction and Demolition Wastes (including excavated so
	The construction and Demontron Wastes (including excavated set
	from contaminated sites)
Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
	03)
	Entry:

Hazard properties

None identified

Determinands

Moisture content: 6.2% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound o	conc.	Classification value	MC Applied	Conc. Not Used
1	0	pН		PH		7.7	pН		7.7	рН	7.7 pH		
2	4	cyanides { salts exception of complete ferricyanides and m specified elsewhere 006-007-00-5	ex cyanides such as nercuric oxycyanide	s ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< th=""></lod<>
3		phenol		400.05.0		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< th=""></lod<>
		604-001-00-2 naphthalene	203-632-7	108-95-2								H	
4			202-049-5	91-20-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
5	9	acenaphthylene	205-917-1	208-96-8	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
6	0	acenaphthene				<0.05	mg/kg		<0.05	ma/ka	<0.000005 %		<lod< td=""></lod<>
			201-469-6	83-32-9								-	
7	0	fluorene	201-695-5	86-73-7	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
8	٥	phenanthrene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			201-581-5	85-01-8									
9	۲	anthracene	204-371-1	120-12-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	0	fluoranthene	204-371-1	120-12-7									
10			205-912-4	206-44-0		0.87	mg/kg		0.87	mg/kg	0.000087 %		
11	۵	pyrene	204-927-3	129-00-0		0.74	mg/kg		0.74	mg/kg	0.000074 %		
12		benzo[a]anthracene	9			0.45	mg/kg		0.45	mg/kg	0.000045 %		
<u> </u>		601-033-00-9	200-280-6	56-55-3		0.40			0.40	ing/kg			
13		chrysene	205 200 4	640.04.0		0.54	mg/kg		0.54	mg/kg	0.000054 %		
<u> </u>		601-048-00-0 benzo[b]fluoranther		218-01-9	+								
14				205-99-2	-	0.74	mg/kg		0.74	mg/kg	0.000074 %		

#		Determinand		CLP Note	User entered	l data	Conv. Factor	Compound o	conc.	Classification value	Applied	Conc. Not Used
		CLP index number EC Number	CAS Number	CF							MC	
15		benzo[k]fluoranthene			0.36	mg/kg		0.36	mg/kg	0.000036 %		
		601-036-00-5 205-916-6	207-08-9									
16		benzo[a]pyrene; benzo[def]chrysene	F0 22 8		0.68	mg/kg		0.68	mg/kg	0.000068 %		
		601-032-00-3 200-028-5 indeno[123-cd]pyrene	50-32-8									
17	۲	205-893-2	193-39-5		0.42	mg/kg		0.42	mg/kg	0.000042 %		
	_	dibenz[a,h]anthracene	100 00 0									
18		601-041-00-2 200-181-8	53-70-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
19		benzo[ghi]perylene	1		0.49	mg/kg		0.49	mg/kg	0.000049 %		
13		205-883-8	191-24-2		0.43	iiig/kg		0.43	iiig/kg	0.000043 78		
20	4	arsenic { <mark>arsenic trioxide</mark> }			4	mg/kg	1.32	5.281	mg/kg	0.000528 %		
		033-003-00-0 215-481-4	1327-53-3	1								
~ .	4	boron { ^e boron tribromide/trichloride/ (combined) }	trifluoride				12 /2					
21			10294-33-4, 10294-34-5, 7637-07-2		1.1	mg/kg	13.43	14.773	mg/kg	0.00148 %		
		cadmium {	1037-07-2									
22	•••	048-010-00-4 215-147-8	1306-23-6	1	<0.2	mg/kg	1.285	<0.257	mg/kg	<0.00002 %		<lod< td=""></lod<>
23	4	chromium in chromium(VI) compound oxide }			<4	mg/kg	1.923	<7.692	mg/kg	<0.000769 %		<lod< td=""></lod<>
		024-001-00-0 215-607-8	1333-82-0									
24	4	chromium in chromium(III) compounds oxide }			40	mg/kg	1.462	58.462	mg/kg	0.00585 %		
		215-160-9	1308-38-9									
25	4				30	mg/kg	1.126	33.777	mg/kg	0.00338 %		
		029-002-00-X 215-270-7	1317-39-1	-								
26	4	lead { lead chromate } 082-004-00-2 231-846-0	7758-97-6	1	26	mg/kg	1.56	40.555	mg/kg	0.0026 %		
27	4	mercury { mercury dichloride }			<0.3	mg/kg	1.353	<0.406	mg/kg	<0.0000406 %		<lod< td=""></lod<>
	-	080-010-00-X 231-299-8	7487-94-7									
28	4	nickel { nickel dihydroxide } 028-008-00-X 235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		32	mg/kg	1.579	50.544	mg/kg	0.00505 %		
29	4	selenium { selenium compounds with cadmium sulphoselenide and those sp in this Annex 034-002-00-8			<1	mg/kg	2.554	<2.554	mg/kg	<0.000255 %		<lod< td=""></lod<>
30	4		1		77	mg/kg	2.774	213.609	mg/kg	0.0214 %		
<u>.</u> .	\square	benzene	1									
31		601-020-00-8 200-753-7	71-43-2	1	<0.001	mg/kg		<0.001	mg/kg	<0.000001 %		<lod< td=""></lod<>
32		toluene 601-021-00-3 203-625-9	108-88-3		<0.001	mg/kg		<0.001	mg/kg	<0.000001 %		<lod< td=""></lod<>
~~		ethylbenzene	1		0.001			0.004		0.0000001.01		1.00
33		601-023-00-4 202-849-4	100-41-4	L	<0.001	mg/kg		<0.001	тт <u>у</u> /кg	<0.0000001 %		<lod< td=""></lod<>
34		o-xylene; [1] p-xylene; [2] m-xylene; [3 601-022-00-9 202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	3 xylene [4] 95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
35		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane 603-181-00-X 216-653-1	1634-04-4		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
36	8	TPH (C6 to C40) petroleum group	TPH		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
		L	1						Total:	0.0432 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

-

Classification of sample: HTP04

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name: LoW Code: HTP04 Chapter: 17: Construction and Demolition Wastes (including excavate from contaminated sites) Sample Depth: 17: Construction and Demolition Wastes (including excavate from contaminated sites) 0.00-0.20 m Entry: 17 05 04 (Soil and stones other than those mentioned in 17 03) 14% 03)	
(no correction)	

Hazard properties

None identified

Determinands

Moisture content: 14% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	8	pН		PH		7.9	pН		7.9	рН	7.9 pH		
2	4	cyanides { salts of exception of complete ferricyanides and measurements of the specified elsewhere 006-007-00-5	ex cyanides such as iercuric oxycyanide	s ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< th=""></lod<>
3		phenol		I		<1	mg/kg		<1	mg/kg	<0.0001 %	1	<lod< th=""></lod<>
Ľ		604-001-00-2	203-632-7	108-95-2			ing/itg			iiig/itg	<0.0001 /0		LOD
4		naphthalene 601-052-00-2	202-049-5	91-20-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
5		acenaphthylene		208-96-8		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %	Ĺ	<lod< td=""></lod<>
6	8	acenaphthene				<0.05	mg/kg		<0.05	ma/ka	<0.000005 %	Ē	<lod< th=""></lod<>
			201-469-6	83-32-9	1								
7	8	fluorene	201-695-5	86-73-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
8	۲	phenanthrene		85-01-8		0.33	mg/kg		0.33	mg/kg	0.000033 %		
9		anthracene		120-12-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
10	8	fluoranthene	205-912-4	206-44-0		1.6	mg/kg		1.6	mg/kg	0.00016 %		
11	۲	pyrene	204-927-3	129-00-0		1.6	mg/kg		1.6	mg/kg	0.00016 %		
12		benzo[a]anthracene 601-033-00-9		56-55-3		0.83	mg/kg		0.83	mg/kg	0.000083 %		
13		chrysene 601-048-00-0	205-923-4	218-01-9		0.9	mg/kg		0.9	mg/kg	0.00009 %		
14		benzo[b]fluoranther	ne	205-99-2		1.4	mg/kg		1.4	mg/kg	0.00014 %		

#		Determinand	CLP Note	User entered	data	Conv. Factor	Compound conc.	Classification value	Applied	Conc. Not Used
		CLP index number EC Number CAS Number	G						MC	
15		benzo[k]fluoranthene		0.69	mg/kg		0.69 mg/kg	0.000069 %		
_	+	601-036-00-5 205-916-6 207-08-9							-	
16		benzo[a]pyrene; benzo[def]chrysene 501-032-00-3 200-028-5 50-32-8		1.5	mg/kg		1.5 mg/kg	0.00015 %		
	+	indeno[123-cd]pyrene							-	
17	-	205-893-2 193-39-5		0.89	mg/kg		0.89 mg/kg	0.000089 %		
	1	dibenz[a,h]anthracene					0.05 "			
18	e	601-041-00-2 200-181-8 53-70-3		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
19)	benzo[ghi]perylene		1.2	ma/ka		1.2 mg/kg	0.00012 %		
19	-	205-883-8 191-24-2	1	1.2	mg/kg		1.2 mg/kg	0.00012 /8		
20 🗖	2	arsenic { arsenic trioxide }		8	mg/kg	1.32	10.563 mg/kg	0.00106 %		
	Ō	033-003-00-0 215-481-4 1327-53-3				1.02				
4	•	boron { [●] boron tribromide/trichloride/trifluoride (combined) }				13/3		g 0.00161 %		
21	_	10294-33-4,		1.2	mg/kg	13.43	16.116 mg/kg			
		10294-34-5,								
	_	7637-07-2								
22 획	•	cadmium { cadmium sulfide })48-010-00-4	1	<0.2	mg/kg	1.285	<0.257 mg/kg	<0.00002 %		<lod< td=""></lod<>
	2	chromium in chromium(VI) compounds {				1 0 2 2	-7.000 mallia	.0.000760.0/		
23		oxide })24-001-00-0 215-607-8 1333-82-0	-	<4	тg/кg	1.923	<7.692 mg/kg	<0.000769 %		<lod< td=""></lod<>
			-						-	
24	-	chromium in chromium(III)		32	mg/kg	1.462	46.77 mg/kg	0.00468 %		
		215-160-9 1308-38-9								
25 🛋	•	copper { dicopper oxide; copper (I) oxide }		28	mg/kg	1.126	31.525 mg/kg	0.00315 %		
	_	029-002-00-X 215-270-7 1317-39-1							-	
26 🛋	•	lead { lead chromate }	1	51	mg/kg	1.56	79.551 mg/kg	0.0051 %		
	+	b82-004-00-2 231-846-0 7758-97-6 mercury { mercury dichloride }								
27 🗖	•	080-010-00-X 231-299-8 7487-94-7		<0.3	mg/kg	1.353	<0.406 mg/kg	<0.0000406 %		<lod< td=""></lod<>
4	_	nickel { nickel dihydroxide }								
28	•	028-008-00-X 235-008-5 [1] 12054-48-7 [1] 234-348-1 [2] 11113-74-9 [2]	-	31	mg/kg	1.579	48.964 mg/kg	0.0049 %		
29		selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<1	mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< td=""></lod<>
30 🛋	_	zinc { zinc chromate }					005.450 //			
30 🛰	•)24-007-00-3		110	mg/kg	2.774	305.156 mg/kg	0.0305 %		
31	1	benzene	1	<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
51	ē	601-020-00-8 200-753-7 71-43-2		<0.001	шу/ку		<0.001 mg/kg	<0.0000001 /8		LOD
32		toluene 601-021-00-3 203-625-9 108-88-3		<0.001	mg/kg		<0.001 mg/kg	<0.000001 %		<lod< td=""></lod<>
00 0		ethylbenzene	1				0.001	0.0000001.00		
33 "		601-023-00-4 202-849-4 100-41-4	1	<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
	Ţ	o-xylene; [1] p-xylene; [2] m-xylene; [3] xylene [4]								
34	6	301-022-00-9 202-422-2 [1] 95-47-6 [1] 203-396-5 [2] 106-42-3 [2] 203-576-3 [3] 108-38-3 [3] 215-535-7 [4] 1330-20-7 [4]		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
35		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane 503-181-00-X 216-653-1 1634-04-4		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
36		TPH (C6 to C40) petroleum group		16	mg/kg		16 mg/kg	0.0016 %		
			I				Total:	0.0551 %	+	

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
Θ	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because TPH in soil is not likely to be flammable at concentrations <mark><1000 mg/kg.</mark>

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0016%)

Classification of sample: HTP05

Sample details

	L - 10/ O 1-	
Sample Name:	LoW Code:	
HTP05	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.00-0.20 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
15%		
(no correction)		

Hazard properties

None identified

Determinands

Moisture content: 15% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound o	conc.	Classification value	MC Applied	Conc. Not Used
1	8	pН		PH		7.7	pН		7.7	рН	7.7 pH		
2	4	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }				<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< th=""></lod<>
3		phenol 604-001-00-2 2	00.000 7	400.05.0		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< th=""></lod<>
4		naphthalene		91-20-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
5	8	acenaphthylene		208-96-8		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
6	8	acenaphthene		83-32-9	_	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
7	8	fluorene	201-695-5	86-73-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
8	8	phenanthrene	201-581-5	85-01-8		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
9		anthracene	204-371-1	120-12-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
10	۲	fluoranthene	205-912-4	206-44-0		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
11	0	pyrene	204-927-3	129-00-0		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
12		benzo[a]anthracene 601-033-00-9 2		56-55-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
13		chrysene 601-048-00-0 2	205-923-4	218-01-9		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
14		benzo[b]fluoranthen 601-034-00-4 2		205-99-2	_	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>

#		Determinand	CLP Note	User entere	d data	Conv. Factor	Compound conc.	Classification value	Applied	Conc. Not Used
45		benzo[k]fluoranthene	ل				0.05 //	0.000005.0/	MC	
15		601-036-00-5 205-916-6 207-08-9	_	< 0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
16		benzo[a]pyrene; benzo[def]chrysene		-0.05	ma/ka		-0.05 mg///g	-0.00005.9/		
10		601-032-00-3 200-028-5 50-32-8		< 0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
17	۲	indeno[123-cd]pyrene 205-893-2 193-39-5		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
18		dibenz[a,h]anthracene 601-041-00-2 200-181-8 53-70-3		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
19	0	benzo[ghi]perylene		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
	•	205-883-8 191-24-2 arsenic { arsenic trioxide }								
20	4	033-003-00-0 215-481-4 1327-53-3		5.2	mg/kg	1.32	6.866 mg/kg	0.000687 %		
	_							1		
21	4	boron { [•] boron tribromide/trichloride/trifluoride (combined) }		0.5	ma/ka	13.43	6.715 mg/kg	0.000672 %		
21		10294-33-4, 10294-34-5, 7637-07-2		0.0	iiig/kg	10.40	0.713 119/82	0.000072 /8		
22	4	cadmium { cadmium sulfide }	1	<0.2	ma/ka	1.285	<0.257 mg/kg	<0.00002 %		<lod< td=""></lod<>
	<u> </u>	048-010-00-4 215-147-8 1306-23-6 chromium in chromium(VI) compounds { chromium(VI)				1.200				
23		<mark>oxide</mark> } 024-001-00-0 215-607-8 1333-82-0	_	<4	mg/kg	1.923	<7.692 mg/kg	<0.000769 %		<lod< td=""></lod<>
24	4	chromium in chromium(III) compounds { Chromium(I oxide } 215-160-9 1308-38-9	<mark>l)</mark>	31	mg/kg	1.462	45.308 mg/kg	0.00453 %		
		copper { dicopper oxide; copper (l) oxide }								
25	4	029-002-00-X 215-270-7 1317-39-1		23	mg/kg	1.126	25.895 mg/kg	0.00259 %		
26	4	lead { lead chromate }	1	22	mg/kg	1.56	34.316 mg/kg	0.0022 %		
27	4	082-004-00-2 231-846-0 7758-97-6 mercury { mercury dichloride }		<0.3	mg/kg	1.353	<0.406 mg/kg	<0.0000406 %		<lod< td=""></lod<>
		080-010-00-X 231-299-8 7487-94-7 nickel { nickel dihydroxide }								
28		028-008-00-X 235-008-5 [1] 12054-48-7 [1] 234-348-1 [2] 11113-74-9 [2]		28	mg/kg	1.579	44.226 mg/kg	0.00442 %		
29	4	selenium { <mark>selenium compounds with the exception of cadmium sulphoselenide and those specified elsewher in this Annex } 034-002-00-8</mark>	•	<1	mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< td=""></lod<>
30	4	zinc { zinc chromate }		120	mg/kg	2.774	332.898 mg/kg	0.0333 %		
31		benzene		<0.001	mg/kg		<0.001 mg/kg	<0.000001 %		<lod< td=""></lod<>
32		601-020-00-8 200-753-7 71-43-2 toluene		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
		601-021-00-3 203-625-9 108-88-3 ethylbenzene	_							
33	۲	601-023-00-4 202-849-4 100-41-4		<0.001	mg/kg		<0.001 mg/kg	<0.000001 %		<lod< td=""></lod<>
		o-xylene; [1] p-xylene; [2] m-xylene; [3] xylene [4]								
34		601-022-00-9 202-422-2 [1] 95-47-6 [1] 203-396-5 [2] 106-42-3 [2] 203-576-3 [3] 108-38-3 [3] 215-535-7 [4] 1330-20-7 [4]		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
35		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane 603-181-00-X 216-653-1 1634-04-4		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
36	۲	TPH (C6 to C40) petroleum group		<10	mg/kg		<10 mg/kg	<0.001 %		<lod< td=""></lod<>
		. <u>,</u> l					Total	0.0508 %	1	

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: HTP06

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name: HTP06 Sample Depth: 0.00-0.20 m Moisture content:	· ·	17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)
Moisture content:		03)
22% (no correction)		

Hazard properties

None identified

Determinands

Moisture content: 22% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound o	conc.	Classification value	MC Applied	Conc. Not Used
1	8	pН		PH		7.1	рН		7.1	рН	7.1 pH		
2	4			s ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< th=""></lod<>
3		phenol				<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< th=""></lod<>
			203-632-7	108-95-2									
4		naphthalene 601-052-00-2	202-049-5	91-20-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
5		acenaphthylene	205-917-1	208-96-8		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
6	8	acenaphthene				<0.05			<0.05		-0.000005.8/		<lod< td=""></lod<>
0			201-469-6	83-32-9		<0.05	mg/kg		<0.05	тід/кд	<0.000005 %		<lod< td=""></lod<>
7	8	fluorene	201-695-5	86-73-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
8	8	phenanthrene				0.91	mg/kg		0.91	mg/kg	0.000091 %		
9	۲	anthracene	l.	85-01-8		0.32	mg/kg		0.32	mg/kg	0.000032 %		
		fluoranthene	204-371-1	120-12-7									
10	۲		205-912-4	206-44-0		4.8	mg/kg		4.8	mg/kg	0.00048 %		
11	۵	pyrene	204-927-3	129-00-0		4.6	mg/kg		4.6	mg/kg	0.00046 %		
12		benzo[a]anthracen	e			2.2	mg/kg		2.2	mg/kg	0.00022 %		
			200-280-6	56-55-3								<u> </u>	
13		chrysene 601-048-00-0	205-923-4	218-01-9		2.3	mg/kg		2.3	mg/kg	0.00023 %		
14		benzo[b]fluoranthe	l	F10.01-3		3.6	maller		3.6	malka	0.00036 %		
14		601-034-00-4	205-911-9	205-99-2		3.0	mg/kg		3.0	mg/kg	0.00036 %		

#		Determinand	CLP Note	User entered	d data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
		CLP index number EC Number CAS Number	CLP						MC	
15		benzo[k]fluoranthene 601-036-00-5 205-916-6 207-08-9	_	1.2	mg/kg		1.2 mg/kg	0.00012 %		
16		benzo[a]pyrene; benzo[def]chrysene		3.1	mg/kg		3.1 mg/kg	0.00031 %		
10		601-032-00-3 200-028-5 50-32-8			iiig/itg			0.00001 //		
17	0	indeno[123-cd]pyrene 205-893-2 193-39-5	_	1.9	mg/kg		1.9 mg/kg	0.00019 %		
18		dibenz[a,h]anthracene 601-041-00-2 200-181-8 53-70-3		0.45	mg/kg		0.45 mg/kg	0.000045 %		
19		benzo[ghi]perylene 205-883-8 191-24-2		2.2	mg/kg		2.2 mg/kg	0.00022 %		
		arsenic { arsenic trioxide }	-							
20	~	033-003-00-0 215-481-4 1327-53-3	_	8.3	mg/kg	1.32	10.959 mg/kg	0.0011 %		
	<u>a</u>									
	~	<pre>boron {</pre>								
21		10294-33-4, 10294-34-5,		3	mg/kg	13.43	40.29 mg/kg	0.00403 %		
	•	cadmium { cadmium sulfide }	_							
22	4	048-010-00-4 215-147-8 1306-23-6	_ 1	<0.2	mg/kg	1.285	<0.257 mg/kg	<0.00002 %		<lod< td=""></lod<>
23	4	chromium in chromium(VI) compounds {		<4	mg/kg	1.923	<7.692 mg/kg	<0.000769 %		<lod< td=""></lod<>
		024-001-00-0 215-607-8 1333-82-0								
24	4	chromium in chromium(III) compounds { Chromium(III) oxide }		33	mg/kg	1.462	48.231 mg/kg	0.00482 %		
		215-160-9 1308-38-9								
25	4	copper { dicopper oxide; copper (I) oxide }		36	mg/kg	1.126	40.532 mg/kg	0.00405 %		
		029-002-00-X 215-270-7 1317-39-1 lead { lead chromate }							-	
26	4	082-004-00-2 231-846-0 7758-97-6	_ 1	43	mg/kg	1.56	67.072 mg/kg	0.0043 %		
27	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7	_	<0.3	mg/kg	1.353	<0.406 mg/kg	<0.0000406 %		<lod< td=""></lod<>
28	4	nickel { <mark>nickel dihydroxide</mark> } 028-008-00-X		31	mg/kg	1.579	48.964 mg/kg	0.0049 %		
29	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<1	mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< td=""></lod<>
30	<u> </u>			150	mg/kg	2.774	416.122 mg/kg	0.0416 %		
31		benzene		<0.001	mg/kg		<0.001 mg/kg	<0.000001 %		<lod< td=""></lod<>
32		601-020-00-8 200-753-7 71-43-2 toluene		<0.001	mg/kg		<0.001 mg/kg	<0.000001 %	-	<lod< td=""></lod<>
		601-021-00-3 203-625-9 108-88-3	\square		5.5		3,3		_	-
33	8	ethylbenzene 601-023-00-4 202-849-4 100-41-4		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
		o-xylene; [1] p-xylene; [2] m-xylene; [3] xylene [4]								
34		601-022-00-9 202-422-2 [1] 95-47-6 [1] 203-396-5 [2] 106-42-3 [2] 203-576-3 [3] 108-38-3 [3] 215-535-7 [4] 1330-20-7 [4]		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
35		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane 603-181-00-X 216-653-1 1634-04-4		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
36	0	TPH (C6 to C40) petroleum group		21	mg/kg		21 mg/kg	0.0021 %		
<u> </u>		· · ·					Total:	0.0711 %	1	

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
Θ	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because TPH in soil is not likely to be flammable at concentrations <1000 mg/kg.

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0021%)

Classification of sample: HTP07

Sample details

Octored News	L - 10/ Q 1-	
Sample Name:	LoW Code:	
HTP07	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.00-0.20 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
15%		
(no correction)		
,		

Hazard properties

None identified

Determinands

Moisture content: 15% No Moisture Correction applied (MC)

#	,	Determinand CLP index number EC Number CAS Number		CLP Note	User entered data		Conv. Factor	Compound conc.		mpound conc. Classification value		Conc. Not Used	
1	8	рН		PH	_	7.3	рН		7.3	рН	7.3 pH		
2	4	cyanides { salts of h exception of complex c ferricyanides and merc specified elsewhere in 006-007-00-5	cyanides such as curic oxycyanide	ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< th=""></lod<>
3		phenol				<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< th=""></lod<>
		604-001-00-2 203 naphthalene	3-632-7	108-95-2	-							-	
4			2-049-5	91-20-3	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
5	8	acenaphthylene	5-917-1	208-96-8		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
6		acenaphthene				<0.05	mg/kg		<0.05	ma/ka	<0.000005 %		<lod< td=""></lod<>
Ľ			1-469-6	83-32-9									
7	9	fluorene 201	-695-5	86-73-7	_	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
8	•	phenanthrene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		201 anthracene	1-581-5	85-01-8	-							-	
9	•		1-371-1	120-12-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
10		fluoranthene	-	-		0.3	mg/kg		0.3	mg/kg	0.00003 %		
10		205	5-912-4	206-44-0		0.3	iiig/kg		0.5	mg/kg	0.00003 /8		
11	•	pyrene 204	1-927-3	129-00-0		0.29	mg/kg		0.29	mg/kg	0.000029 %		
12		benzo[a]anthracene				< 0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
12		601-033-00-9 200)-280-6	56-55-3		<0.00	iiig/kg			ing/kg			
13		chrysene	000 4			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
\vdash		601-048-00-0 205 benzo[b]fluoranthene	5-923-4	218-01-9	-							-	
14			5-911-9	205-99-2	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>

#		Determinand	er do	Use	er entered	d data	Conv. Factor	Compound c	onc.	Classification value	Apl	Conc. Not Used
		CLP index number EC Number CAS Numb	er C	5							MC	
15		benzo[k]fluoranthene			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	601-036-00-5 205-916-6 207-08-9										H	
16		benzo[a]pyrene; benzo[def]chrysene			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-032-00-3 200-028-5 50-32-8									H	
17	8	indeno[123-cd]pyrene 205-893-2 193-39-5			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
18		dibenz[a,h]anthracene 601-041-00-2 200-181-8 53-70-3			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
19	8	benzo[ghi]perylene 205-883-8 191-24-2			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
~~	2	arsenic { arsenic trioxide }			40		4 00	45.044		0.00450.0/		
20	-	033-003-00-0 215-481-4 1327-53-3			12	mg/kg	1.32	15.844	mg/kg	0.00158 %		
	4	boron { • boron tribromide/trichloride/trifluoride										
21		10294-33-4, 10294-34-5, 7637-07-2			1.1	mg/kg	13.43	14.773	mg/kg	0.00148 %		
22	4	cadmium {		1	<0.2	mg/kg	1.285	<0.257	mg/kg	<0.00002 %		<lod< td=""></lod<>
23	4	048-010-00-4 215-147-8 1306-23-6 chromium in chromium(VI) compounds {	l)		<4	ma/ka	1.923	<7.692	ma/ka	<0.000769 %		<lod< td=""></lod<>
25		024-001-00-0 215-607-8 1333-82-0			~4	iiig/kg	1.325	<1.032	iiig/kg	<0.000703 /8		LOD
24	4	chromium in chromium(III) compounds { Chromium oxide }	(111)		39	mg/kg	1.462	57.001	mg/kg	0.0057 %		
		copper { dicopper oxide; copper (I) oxide }									\square	
25	4	029-002-00-X 215-270-7 1317-39-1			30	mg/kg	1.126	33.777	mg/kg	0.00338 %		
26	4	lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6	1	1	32	mg/kg	1.56	49.914	mg/kg	0.0032 %		
27	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7			<0.3	mg/kg	1.353	<0.406	mg/kg	<0.0000406 %	Π	<lod< td=""></lod<>
	_	nickel { nickel dihydroxide }									H	
28		028-008-00-X 235-008-5 [1] 12054-48-7 [1 234-348-1 [2] 11113-74-9 [2			39	mg/kg	1.579	61.6	mg/kg	0.00616 %		
29	*	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhin in this Annex } 034-002-00-8			<1	mg/kg	2.554	<2.554	mg/kg	<0.000255 %		<lod< td=""></lod<>
30	4	zinc { <mark>zinc chromate</mark> }		1	40	mg/kg	2.774	388.381	mg/kg	0.0388 %	Π	
31		benzene			<0.001	mg/kg		<0.001	mg/kg	<0.000001 %		<lod< td=""></lod<>
32		601-020-00-8 200-753-7 71-43-2 toluene			<0.001	mg/kg		<0.001	mg/ka	<0.000001 %	Η	<lod< td=""></lod<>
		601-021-00-3 <u>203-625-9</u> 108-88-3	\rightarrow								Ц	
33	۲	ethylbenzene 601-023-00-4 202-849-4 100-41-4			<0.001	mg/kg		<0.001	mg/kg	<0.000001 %		<lod< td=""></lod<>
		o-xylene; [1] p-xylene; [2] m-xylene; [3] xylene [4]	\rightarrow								Η	
34		601-022-00-9 202-422-2 [1] 95-47-6 [1] 203-396-5 [2] 106-42-3 [2] 203-576-3 [3] 108-38-3 [3] 215-535-7 [4] 1330-20-7 [4]			<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
35		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane 603-181-00-X 216-653-1 1634-04-4			<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
36	0	TPH (C6 to C40) petroleum group		<	:10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
									Total:	0.0628 %	Γ	

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: HTP08

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

	ample Name: ITP08 ample Depth: .00-0.20 m Moisture content: 7% no correction)		 17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)
--	---	--	--

Hazard properties

None identified

Determinands

Moisture content: 27% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	ta Conv. Factor Compo		Compound conc.		Compound conc.		MC Applied	Conc. Not Used
1	8	рН		PH		7.5	рН		7.5	рН	7.5 pH				
2	4	exception of compl	of hydrogen cyanide ex cyanides such as nercuric oxycyanide e in this Annex }	s ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< th=""></lod<>		
3		phenol		1		<1	mg/kg		<1	mg/kg	<0.0001 %	1	<lod< th=""></lod<>		
Ľ		604-001-00-2	203-632-7	108-95-2			iiig/ikg			iiig/kg	<0.0001 /0		LOD		
4		naphthalene 601-052-00-2	000 040 5	64.00.0		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>		
-		acenaphthylene	202-049-5	91-20-3	+							1			
5			205-917-1	208-96-8		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>		
6		acenaphthene				<0.05	mg/kg		<0.05	ma/ka	<0.000005 %		<lod< th=""></lod<>		
Ľ			201-469-6	83-32-9	1										
7	8	fluorene	004 605 5			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>		
-		phenanthrene	201-695-5	86-73-7	-							-			
8	۲		201-581-5	85-01-8	-	0.67	mg/kg		0.67	mg/kg	0.000067 %				
9		anthracene		1		0.19	mg/kg		0.19	mg/kg	0.000019 %				
			204-371-1	120-12-7	1	0.13	iiig/kg		0.13	iiig/kg	0.000013 /8				
10	۲	fluoranthene				2.5	mg/kg		2.5	mg/kg	0.00025 %				
			205-912-4	206-44-0											
11	۲	pyrene	204-927-3	129-00-0		2.3	mg/kg		2.3	mg/kg	0.00023 %				
-		benzo[a]anthracen		123-00-0	+										
12				56-55-3		1.1	mg/kg		1.1	mg/kg	0.00011 %				
13		chrysene		1		1.1	mg/kg		1.1	mg/kg	0.00011 %				
		601-048-00-0	205-923-4	218-01-9	1	1.1	iiig/kg		1.1	ing/kg	0.00011 /0				
14		benzo[b]fluoranthe				1.5	mg/kg		1.5	mg/kg	0.00015 %				
		601-034-00-4	205-911-9	205-99-2											

#	CLP index number EC Number CAS Number		CLP Note	User entered	data	Conv. Factor	Compound conc.	Classification value	Applied	Conc. Not Used
		CLP index number EC Number CAS Number	CLF						MC	
15		benzo[k]fluoranthene 601-036-00-5 205-916-6 207-08-9		0.73	mg/kg		0.73 mg/kg	0.000073 %		
16		benzo[a]pyrene; benzo[def]chrysene		1.4	malka		1.4 ma/ka	0.00014 %		
10		601-032-00-3 200-028-5 50-32-8		1.4	mg/kg		1.4 mg/kg	0.00014 %		
17		indeno[123-cd]pyrene		0.84	mg/kg		0.84 mg/kg	0.000084 %		
		205-893-2 193-39-5								
18		dibenz[a,h]anthracene 601-041-00-2 200-181-8 53-70-3	-	<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
19	8	benzo[ghi]perylene 205-883-8 191-24-2		0.95	mg/kg		0.95 mg/kg	0.000095 %		
		arsenic { arsenic trioxide }								
20	44	033-003-00-0 215-481-4 1327-53-3		18	mg/kg	1.32	23.766 mg/kg	0.00238 %		
	æ									
	•••	<pre>boron {</pre>								
21		10294-33-4,		2.2	mg/kg	13.43	29.546 mg/kg	0.00295 %		
		10294-34-5,								
		7637-07-2							_	
22	-	cadmium { cadmium sulfide } 048-010-00-4 215-147-8 1306-23-6	1	1.2	mg/kg	1.285	1.542 mg/kg	0.00012 %		
23	4	chromium in chromium(VI) compounds {		<4	mg/kg	1.923	<7.692 mg/kg	<0.000769 %		<lod< td=""></lod<>
		024-001-00-0 215-607-8 1333-82-0	_							
24	4	<pre>chromium in chromium(III) compounds {</pre>		39	mg/kg	1.462	57.001 mg/kg	0.0057 %		
		215-160-9 1308-38-9								
25	4	copper {		330	ma/ka	1.126	371.543 mg/kg	0.0372 %		
20		029-002-00-X 215-270-7 1317-39-1	-			1.120				
26	4	lead { lead chromate }	1	55	mg/kg	1.56	85.79 mg/kg	0.0055 %		
27	4	082-004-00-2 231-846-0 7758-97-6 mercury { mercury dichloride }		<0.3	ma/ka	1.353	<0.406 mg/kg	<0.0000406 %		<lod< td=""></lod<>
		080-010-00-X 231-299-8 7487-94-7								
28	-	nickel { nickel dihydroxide } 028-008-00-X		32	mg/kg	1.579	50.544 mg/kg	0.00505 %		
29	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<1	mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< td=""></lod<>
		034-002-00-8 zinc { zinc chromate }							-	
30	~	024-007-00-3		290	mg/kg	2.774	804.502 mg/kg	0.0805 %		
31		benzene 601-020-00-8 200-753-7 71-43-2		<0.001	mg/kg		<0.001 mg/kg	<0.000001 %		<lod< td=""></lod<>
32		toluene		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
		601-021-00-3 203-625-9 108-88-3 ethylbenzene	-							
33	8	601-023-00-4 202-849-4 100-41-4		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
		o-xylene; [1] p-xylene; [2] m-xylene; [3] xylene [4]								
34		601-022-00-9 202-422-2 [1] 95-47-6 [1] 203-396-5 [2] 106-42-3 [2] 203-576-3 [3] 108-38-3 [3] 215-535-7 [4] 1330-20-7 [4]		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
35		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane 603-181-00-X 216-653-1 1634-04-4	_	<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
36	۲	TPH (C6 to C40) petroleum group		35	mg/kg		35 mg/kg	0.0035 %		
			1						1	

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
Θ	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because TPH in soil is not likely to be flammable at concentrations <1000 mg/kg.

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0035%)

Appendix A: Classifier defined and non CLP determinands

• pH (CAS Number: PH)

Description/Comments: Appendix C4 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: None.

• salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex

CLP index number: 006-007-00-5

Description/Comments: Conversion factor based on a worst case compound: sodium cyanide Data source: Commission Regulation (EC) No 790/2009 - 1st Adaptation to Technical Progress for Regulation (EC) No 1272/2008. (ATP1) Additional Hazard Statement(s): EUH032 >= 0.2 % Reason for additional Hazards Statement(s)/Risk Phrase(s):

14 Dec 2015 - EUH032 >= 0.2 % hazard statement sourced from: WM3, Table C12.2

acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Skin Irrit. 2 H315, STOT SE 3 H335, Eye Irrit. 2 H319, Acute Tox. 1 H310, Acute Tox. 1 H330, Acute Tox. 4 H302

acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Aquatic Chronic 2 H411, Aquatic Chronic 1 H410, Aquatic Acute 1 H400, Skin Irrit. 2 H315, STOT SE 3 H335, Eye Irrit. 2 H319

• fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Aquatic Chronic 1 H410 , Aquatic Acute 1 H400

• phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Skin Irrit. 2 H315, Aquatic Chronic 1 H410, Aquatic Acute 1 H400, Skin Sens. 1 H317, Carc. 2 H351, STOT SE 3 H335, Eye Irrit. 2 H319, Acute Tox. 4 H302

^a anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Aquatic Chronic 1 H410 , Aquatic Acute 1 H400 , Skin Sens. 1 H317 , Skin Irrit. 2 H315 , STOT SE 3 H335 , Eye Irrit. 2 H319

^e fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21 Aug 2015 Hazard Statements: Aquatic Chronic 1 H410 , Aquatic Acute 1 H400 , Acute Tox. 4 H302

• pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21 Aug 2015 Hazard Statements: Aquatic Chronic 1 H410, Aquatic Acute 1 H400, STOT SE 3 H335, Eye Irrit. 2 H319, Skin Irrit. 2 H315

Report created by Fiona Waldron on 06 Mar 2019

[•] indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Carc. 2 H351

• benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 23 Jul 2015 Hazard Statements: Aquatic Chronic 1 H410, Aquatic Acute 1 H400

• boron tribromide/trichloride/trifluoride (combined) (CAS Number: 10294-33-4, 10294-34-5, 7637-07-2)

Conversion factor: 13.43 Description/Comments: Combines the hazard statements and the average of the conversion factors for boron tribromide, boron trichloride and boron trifluoride Data source: N/A Data source date: 06 Aug 2015 Hazard Statements: Skin Corr. 1B H314, Skin Corr. 1A H314, Acute Tox. 2 H300, Acute Tox. 2 H330, EUH014

• chromium(III) oxide (EC Number: 215-160-9, CAS Number: 1308-38-9)

Conversion factor: 1.462 Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Aquatic Chronic 1 H410, Aquatic Acute 1 H400, Repr. 1B H360FD, Skin Sens. 1 H317, Resp. Sens. 1 H334, Skin Irrit. 2 H315, STOT SE 3 H335, Eye Irrit. 2 H319, Acute Tox. 4 H302, Acute Tox. 4 H332

• ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

CLP index number: 601-023-00-4 Description/Comments: Data source: Commission Regulation (EU) No 605/2014 – 6th Adaptation to Technical Progress for Regulation (EC) No 1272/2008. (ATP6) Additional Hazard Statement(s): Carc. 2 H351 Reason for additional Hazards Statement(s)/Risk Phrase(s): 03 Jun 2015 - Carc. 2 H351 hazard statement sourced from: IARC Group 2B (77) 2000

• TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: Aquatic Chronic 2 H411, Repr. 2 H361d, Carc. 1B H350, Muta. 1B H340, STOT RE 2 H373, Asp. Tox. 1 H304, Flam. Liq. 3 H226

Appendix B: Rationale for selection of metal species

cyanides {salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex}

Report created by Fiona Waldron on 06 Mar 2019

lead {lead chromate}

Worst case species based on hazard statements

mercury {mercury dichloride}

Worst case species based on hazard statements

nickel {nickel dihydroxide}

Worst case species based on hazard statements

selenium (selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex)

Worst case species based on hazard statements

zinc {zinc chromate}

Worst case

Appendix C: Version

HazWasteOnline Classification Engine: WM3 1st Edition v1.1, May 2018 HazWasteOnline Classification Engine Version: 2019.63.3818.7784 (04 Mar 2019) HazWasteOnline Database: 2019.63.3818.7784 (04 Mar 2019)

This classification utilises the following guidance and legislation: WM3 v1.1 - Waste Classification - 1st Edition v1.1 - May 2018 CLP Regulation - Regulation 1272/2008/EC of 16 December 2008 1st ATP - Regulation 790/2009/EC of 10 August 2009 2nd ATP - Regulation 286/2011/EC of 10 March 2011 3rd ATP - Regulation 618/2012/EU of 10 July 2012 4th ATP - Regulation 487/2013/EU of 8 May 2013 Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013 5th ATP - Regulation 944/2013/EU of 2 October 2013 6th ATP - Regulation 605/2014/EU of 5 June 2014 WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014 Revised List of Wastes 2014 - Decision 2014/955/EU of 18 December 2014 7th ATP - Regulation 2015/1221/EU of 24 July 2015 8th ATP - Regulation (EU) 2016/918 of 19 May 2016 9th ATP - Regulation (EU) 2016/1179 of 19 July 2016 10th ATP - Regulation (EU) 2017/776 of 4 May 2017 HP14 amendment - Regulation (EU) 2017/997 of 8 June 2017 13th ATP - Regulation (EU) 2018/1480 of 4 October 2018 POPs Regulation 2004 - Regulation 850/2004/EC of 29 April 2004 1st ATP to POPs Regulation - Regulation 756/2010/EU of 24 August 2010 2nd ATP to POPs Regulation - Regulation 757/2010/EU of 24 August 2010

Job name	Abermule Business Park - TP Samples
Comments	
Classification Engine	WM3 1st Edition v1.1, May 2018
Waste Stream	Abermule Business Park
Created by	Fiona Waldron (Arcadis Consulting (UK) Ltd)
Created on	06/03/2019

Determinand (laboratory concentrations)	Unit	TP101	TP101[2]	TP102	TP102[2]	TP103	TP103[2]	TP104	TP104[2]
Classification Result		Non Hazardous	Non Hazardous	Non Hazardous	Non Hazardous	Non Hazardous	Non Hazardous	Non Hazardous	Non Hazardous
Depth	m	0.00-0.20	0.20-0.40	0.00-0.20	0.60-0.80	0.00-0.30	0.40-0.60	0.00-0.20	0.40-0.60
moisture {no correction}	%	15	12	16	6.3	16	21	15	12
asbestos	mg/kg	Not detected	Not detected	Not detected	Not detected	Not detected	Not detected	Not detected	Not detected
pH	pН	6.2	6.8	6.9	7.3	6.5	6.9	7	6.8
cyanides {salts of hydrogen cyanide with the exception o	lmg/kg	<1.884	1	<1.884	<1.884	<1.884	<1.884	<1.884	<1.884
phenol		<1	<1	<1	<1	<1	<1	<1	<1
naphthalene	mg/kg	<0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05
acenaphthylene	mg/kg	<0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05
acenaphthene	mg/kg	<0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05
fluorene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
phenanthrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
anthracene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
fluoranthene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
benzo[a]anthracene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
chrysene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
benzo[b]fluoranthene	mg/kg	<0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05	<0.05
benzo[k]fluoranthene	mg/kg	<0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05
benzo[a]pyrene; benzo[def]chrysene	mg/kg	<0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05
indeno[123-cd]pyrene	mg/kg	<0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05
dibenz[a,h]anthracene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
benzo[ghi]perylene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
arsenic {arsenic trioxide}	mg/kg	13	12	12	16	9.7	11	6	
boron {boron tribromide/trichloride/trifluoride (combined)		1.4	0.7	1.9					
cadmium {cadmium sulfide}		<0.257	<0.257	<0.257	<0.257	<0.257	<0.257	<0.257	<0.257
chromium in chromium(VI) compounds {chromium(VI) or	mg/kg	<7.692	<7.692	<7.692	<7.692	<7.692	<7.692	<7.692	<7.692
chromium in chromium(III) compounds {chromium(III) o>	mg/kg	52	33			39			
copper {dicopper oxide; copper (I) oxide}	mg/kg	35	33				28		
lead {lead chromate}	mg/kg	31	19		26		20		= -
mercury {mercury dichloride}	mg/kg	<0.406	<0.406	<0.406	<0.406	<0.406	<0.406	<0.406	<0.406
nickel {nickel dihydroxide}	mg/kg	39	41	35		34			
selenium (selenium compounds with the exception of ca	mg/kg	<2.554	<2.554	<2.554	<2.554	<2.554	<2.554	<2.554	<2.554
zinc {zinc chromate}	mg/kg	130	110	130	99	120	120	110	100
benzene	mg/kg	<0.001	<0.001	< 0.001	<0.001	< 0.001	<0.001	<0.001	<0.001
toluene	mg/kg	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
ethylbenzene	mg/kg	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
o-xylene; [1] p-xylene; [2] m-xylene; [3] xylene [4]		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropa		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
TPH (C6 to C40) petroleum group	mg/kg	<10	<10	11	<10	14	<10	<10	<10
confirm TPH has NOT arisen from diesel or petrol	n/a								

Notes:

HP3 Flamable has been changed to non hazardous for TPH at concentrations <1000 mg/kg. Where a substance has a HP3 classification, it is assumed that enough material is present for ignition to occur, i.e. that the chemical is in its raw from, not within the soil matrix. In the case of soils, ignition is unlikely at concentrations <1000 mg/kg. However, this would need to be confirmed by the operator of the landfill where the waste is intended to be taken.

Waste Classification Report

Job name				
Abermule Business Park - TP Samples				
Description/Comments				
Project				
Aberm				
Site				
Aber				
Related Documents				
# Name None		Description		
Waste Stream Template Abermule Business Park				
Classified by				
Name: Fiona Waldron Date: 06 Mar 2019 08:31 GMT Telephone: 0117 3721231	Arc 1st Ten Bris	npany: adis Consulting (UK) Ltd Floor, 2 Glass Wharf ople Quay ttol : 0FR		
Report				
Created by: Fiona Waldron Created date: 06 Mar 2019 08:31 GMT				
Job summary				
# Sample Name	Depth [m]	Classification Result	Hazard properties	Page

#	Sample Name	Depth [m]	Classification Result	Hazard properties	Page
1	TP101	0.00-0.20	Non Hazardous		3
2	TP101[2]	0.20-0.40	Non Hazardous		6
3	TP102	0.00-0.20	Non Hazardous		9
4	TP102[2]	0.60-0.80	Non Hazardous		12
5	TP103	0.00-0.30	Non Hazardous		15
6	TP103[2]	0.40-0.60	Non Hazardous		18
7	TP104	0.00-0.20	Non Hazardous		21
8	TP104[2]	0.40-0.60	Non Hazardous		24

Appendices		Page
Appendix A: Classifier defined and non CLP determinands		27
www.hazwasteonline.com	383FV-LURW4-BPHWY	Page 1 of 29

Appendices	Page
Appendix B: Rationale for selection of metal species	28
Appendix C: Version	29

Classification of sample: TP101

Sample details

Sample Name:	LoW Code:	
TP101	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.00-0.20 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
15%		
(no correction)		

Hazard properties

None identified

Determinands

Moisture content: 15% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	data	Conv. Factor	Compound o	conc.	Classification value	MC Applied	Conc. Not Used
1	8	рН		PH		6.2	pН		6.2	pН	6.2 pH		
2	4	cyanides { salts of exception of complex ferricyanides and me specified elsewhere 006-007-00-5	x cyanides such as ercuric oxycyanide	s ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< th=""></lod<>
3		phenol 604-001-00-2 2	02 622 7	100 05 0		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< th=""></lod<>
4		naphthalene		91-20-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
5	8	acenaphthylene		208-96-8		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
6	8	acenaphthene		83-32-9	_	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
7	8	fluorene	01-695-5	86-73-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
8	8	phenanthrene	01-581-5	85-01-8		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
9		anthracene	04-371-1	120-12-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
10	۲	fluoranthene	05-912-4	206-44-0		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
11	0	pyrene 2	04-927-3	129-00-0		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
12		benzo[a]anthracene 601-033-00-9 2	00-280-6	56-55-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
13		chrysene 601-048-00-0 2	05-923-4	218-01-9		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
14		benzo[b]fluoranthene 601-034-00-4 2		205-99-2	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>

#	# Determinand				Conv. Factor	Compound conc.	Classification value	Applied	Conc. Not Used	
		CLP index number EC Number CAS Number	СГР						MC /	
15		benzo[k]fluoranthene		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-036-00-5 205-916-6 207-08-9								
16		benzo[a]pyrene; benzo[def]chrysene		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
_		601-032-00-3 200-028-5 50-32-8								
17	Θ	indeno[123-cd]pyrene		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
		205-893-2 193-39-5								
18		dibenz[a,h]anthracene 601-041-00-2 200-181-8 53-70-3		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
19	8	benzo[ghi]perylene 205-883-8 191-24-2		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
	•	arsenic { arsenic trioxide }	-							
20	4	033-003-00-0 215-481-4 1327-53-3		13	mg/kg	1.32	17.164 mg/kg	0.00172 %		
			-							
21	4	boron { <pre> boron tribromide/trichloride/trifluoride (combined) } </pre>		1.4	malka	13.43	18.802 mg/kg	0.00188 %		
21		10294-33-4, 10294-34-5,		1.4	шу/ку	13.43	18.802 mg/kg	0.00100 %		
	_	7637-07-2								
22		cadmium { cadmium sulfide } 048-010-00-4 215-147-8 1306-23-6	1	<0.2	mg/kg	1.285	<0.257 mg/kg	<0.00002 %		<lod< td=""></lod<>
23	4	chromium in chromium(VI) compounds {		<4	mg/kg	1.923	<7.692 mg/kg	<0.000769 %		<lod< td=""></lod<>
		024-001-00-0 215-607-8 1333-82-0								
24	4	chromium in chromium(III) compounds { ^e chromium(III) <mark>oxide</mark> }		52	mg/kg	1.462	76.001 mg/kg	0.0076 %		
		215-160-9 1308-38-9								
25	4	copper { dicopper oxide; copper (I) oxide }		35	mg/kg	1.126	39.406 mg/kg	0.00394 %		
		029-002-00-X 215-270-7 1317-39-1								
26	4	lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6	1	31	mg/kg	1.56	48.354 mg/kg	0.0031 %		
27	4	mercury { mercury dichloride }		<0.3	mg/kg	1.353	<0.406 mg/kg	<0.0000406 %		<lod< td=""></lod<>
	-	080-010-00-X 231-299-8 7487-94-7	-							
28		nickel { nickel dihydroxide } 028-008-00-X 235-008-5 [1] 12054-48-7 [1] 234-348-1 [2] 11113-74-9 [2]		39	mg/kg	1.579	61.6 mg/kg	0.00616 %		
29	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex } 034-002-00-8		<1	mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< td=""></lod<>
30	4	zinc { zinc chromate }		130	mg/kg	2.774	360.639 mg/kg	0.0361 %		
24		benzene		-0.001	maller		<0.001 mm//	<0.000001.00		<lod< td=""></lod<>
31		601-020-00-8 200-753-7 71-43-2		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
32		toluene 601-021-00-3 203-625-9 108-88-3		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
	6	ethylbenzene	+							
33		601-023-00-4 202-849-4 100-41-4		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
		o-xylene; [1] p-xylene; [2] m-xylene; [3] xylene [4]								
34		601-022-00-9 202-422-2 [1] 95-47-6 [1] 203-396-5 [2] 106-42-3 [2] 203-576-3 [3] 108-38-3 [3] 215-535-7 [4] 1330-20-7 [4]		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
35		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane 603-181-00-X 216-653-1 1634-04-4		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
36	0	TPH (C6 to C40) petroleum group		<10	mg/kg		<10 mg/kg	<0.001 %		<lod< td=""></lod<>
		· · · · ·					Total:	0.0629 %	1	

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: TP101[2]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

	Sample Name: [P101[2] Sample Depth: D.20-0.40 m Moisture content: 12% no correction)		 17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)
--	--	--	--

Hazard properties

None identified

Determinands

Moisture content: 12% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound c	onc.	Classification value	MC Applied	Conc. Not Used
1	0	рН		PH		6.8	pН		6.8	pН	6.8 pH		
2	4	exception of compl	of hydrogen cyanide ex cyanides such as nercuric oxycyanide e in this Annex }	s ferrocyanides,		1	mg/kg	1.884	1.884	mg/kg	0.000188 %		
3		phenol				<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< th=""></lod<>
		604-001-00-2 naphthalene	203-632-7	108-95-2	-							-	
4		· ·	202-049-5	91-20-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
5	٥	acenaphthylene	205-917-1	208-96-8		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
6		acenaphthene		1		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
Ľ			201-469-6	83-32-9	1						-		
7	0	fluorene	201-695-5	86-73-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
8	0	phenanthrene	201-581-5	85-01-8		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
9	0	anthracene		120-12-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
		fluoranthene	204-371-1	120-12-7	-								
10			205-912-4	206-44-0	-	<0.05	mg/kg	3	<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
11	0	pyrene	204-927-3	129-00-0		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
12		benzo[a]anthracen	e	EC 55 2		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
-		chrysene	200-280-8	56-55-3	+							-	
13			205-923-4	218-01-9		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
14		benzo[b]fluoranthe		bac ao a		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
		601-034-00-4	205-911-9	205-99-2						0	<0.000000 /6		

#		Determinand				Conv. Factor	Compound conc.	Classification value	Applied	Conc. Not Used
		CLP index number EC Number CAS Number	CLP						MC	
15		benzo[k]fluoranthene 601-036-00-5 205-916-6 207-08-9		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
10		benzo[a]pyrene; benzo[def]chrysene		-0.05	~~//.~		-0.05 ma//ra	-0.00000E %/		
16		601-032-00-3 200-028-5 50-32-8		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
17	0	indeno[123-cd]pyrene		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
		205-893-2 193-39-5			ng/ng					.200
18		dibenz[a,h]anthracene 601-041-00-2 200-181-8 53-70-3		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
19	۲	benzo[ghi]perylene 205-883-8 191-24-2		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
		arsenic { arsenic trioxide }	\vdash						-	
20	44	033-003-00-0 215-481-4 1327-53-3		12 1	mg/kg	1.32	15.844 mg/kg	0.00158 %		
	æ		\vdash							
	•••	<pre>boron {</pre>								
21		10294-33-4, 10294-34-5,		0.7	mg/kg	13.43	9.401 mg/kg	0.00094 %		
		7637-07-2								
22	~	cadmium { cadmium sulfide }	1	<0.2	mg/kg	1.285	<0.257 mg/kg	<0.00002 %		<lod< td=""></lod<>
	_	048-010-00-4 215-147-8 1306-23-6 chromium in chromium(VI) compounds { chromium(VI)							-	
23	4	oxide }	_	<4	mg/kg	1.923	<7.692 mg/kg	<0.000769 %		<lod< td=""></lod<>
	-	024-001-00-0 215-607-8 1333-82-0							_	
24	44	chromium in chromium(III) compounds {		33 1	mg/kg	1.462	48.231 mg/kg	0.00482 %		
		215-160-9 1308-38-9								
25	4	copper { dicopper oxide; copper (I) oxide }		33	mg/kg	1.126	37.154 mg/kg	0.00372 %		
	_	029-002-00-X 215-270-7 1317-39-1								
26	4	lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6	1	19	mg/kg	1.56	29.636 mg/kg	0.0019 %		
27		mercury { mercury dichloride }		<0.3	ma/ka	1.353	<0.406 mg/kg	<0.0000406 %		<lod< td=""></lod<>
	_	080-010-00-X 231-299-8 7487-94-7								
28		nickel { nickel dihydroxide } 028-008-00-X 235-008-5 [1] 12054-48-7 [1] 234-348-1 [2] 11113-74-9 [2]		41	mg/kg	1.579	64.759 mg/kg	0.00648 %		
29	~	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }	-	<1	mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< td=""></lod<>
30		zinc { zinc chromate }		110	ma/ka	2.774	305.156 mg/kg	0.0305 %		
		024-007-00-3			5.9					
31		benzene 601-020-00-8 200-753-7 71-43-2		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
32		toluene 601-021-00-3 203-625-9 108-88-3		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
		ethylbenzene	\square							
33	9	601-023-00-4 202-849-4 100-41-4		<0.001	mg/kg		<0.001 mg/kg	<0.000001 %		<lod< td=""></lod<>
		o-xylene; [1] p-xylene; [2] m-xylene; [3] xylene [4]								
34		601-022-00-9 202-422-2 [1] 95-47-6 [1] 203-396-5 [2] 106-42-3 [2] 203-576-3 [3] 108-38-3 [3] 215-535-7 [4] 1330-20-7 [4]		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
35		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane 603-181-00-X 216-653-1 1634-04-4		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
36	۲	TPH (C6 to C40) petroleum group		<10	mg/kg		<10 mg/kg	<0.001 %		<lod< td=""></lod<>
	TPH						Total:	0.0524 %	-	

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
Θ	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: TP102

Sample details

Comple Nemer		
Sample Name:	LoW Code:	
TP102	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.00-0.20 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
16%		
(no correction)		
(

Hazard properties

None identified

Determinands

Moisture content: 16% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound o	conc.	Classification value	MC Applied	Conc. Not Used
1	0	рН		PH	_	6.9	pН		6.9	рН	6.9 pH		
2	4	exception of comple	of hydrogen cyanide ex cyanides such as hercuric oxycyanide e in this Annex }	s ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< th=""></lod<>
3		phenol 604-001-00-2	203-632-7	108-95-2		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< th=""></lod<>
4		naphthalene	1	91-20-3	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %	Γ	<lod< td=""></lod<>
5	9	acenaphthylene	205-917-1	208-96-8		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
6	8	acenaphthene	201-469-6	83-32-9	_	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
7	8	fluorene		86-73-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %	1	<lod< td=""></lod<>
8	0	phenanthrene		85-01-8		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %	Γ	<lod< td=""></lod<>
9		anthracene	204-371-1	120-12-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
10	۲	fluoranthene	205-912-4	206-44-0		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
11	0	pyrene	204-927-3	129-00-0		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
12		benzo[a]anthracene 601-033-00-9		56-55-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
13		chrysene 601-048-00-0	205-923-4	218-01-9	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
14		benzo[b]fluoranther 601-034-00-4		205-99-2	_	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>

#		Determinand	CLP Note	User entered	l data	Conv. Factor	Compound conc.	Classification value	Applied	Conc. Not Used
		CLP index number EC Number CAS Number	CLP						MC	
15		benzo[k]fluoranthene		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
10		601-036-00-5 205-916-6 207-08-9		<0.00	iiig/kg			<0.000000 /0		
16		benzo[a]pyrene; benzo[def]chrysene		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
10		601-032-00-3 200-028-5 50-32-8		<0.05	iiig/kg		<0.00 mg/kg	<0.000000 78		
17	0	indeno[123-cd]pyrene		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
		205-893-2 193-39-5		<0.00	iiig/kg		<0.00 mg/kg	<0.000000 /0		LOD
18		dibenz[a,h]anthracene 601-041-00-2 200-181-8 53-70-3		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
19	0	benzo[ghi]perylene 205-883-8 191-24-2		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
	<u>æ</u>	arsenic { arsenic trioxide }								
20		033-003-00-0 215-481-4 1327-53-3	-	12	mg/kg	1.32	15.844 mg/kg	0.00158 %		
	æ								+	
21	~	boron { [®] boron tribromide/trichloride/trifluoride (combined) }		1.9	ma/ka	13.43	25.517 mg/kg	0.00255 %		
21		10294-33-4, 10294-34-5, 7637-07-2		1.0	iiig/kg	10.40	20.017 mg/kg	0.00200 /0		
	-9	cadmium { cadmium sulfide }								
22		048-010-00-4 215-147-8 1306-23-6	1	<0.2	mg/kg	1.285	<0.257 mg/kg	<0.00002 %		<lod< td=""></lod<>
23	4	chromium in chromium(VI) compounds { chromium(VI) oxide }		<4	mg/kg	1.923	<7.692 mg/kg	<0.000769 %		<lod< td=""></lod<>
		024-001-00-0 215-607-8 1333-82-0								
24	4	chromium in chromium(III) compounds {		40	mg/kg	1.462	58.462 mg/kg	0.00585 %		
		215-160-9 1308-38-9								
25	4	copper { dicopper oxide; copper (I) oxide }		35	mg/kg	1.126	39.406 mg/kg	0.00394 %		
		029-002-00-X 215-270-7 1317-39-1								
26	4	lead { lead chromate }	1	33	mg/kg	1.56	51.474 mg/kg	0.0033 %		
		082-004-00-2 231-846-0 7758-97-6	-						-	
27	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7	-	<0.3	mg/kg	1.353	<0.406 mg/kg	<0.0000406 %		<lod< td=""></lod<>
	4	nickel {								
28		028-008-00-X 235-008-5 [1] 12054-48-7 [1] 234-348-1 [2] 11113-74-9 [2]		35	mg/kg	1.579	55.282 mg/kg	0.00553 %		
29	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex } 034-002-00-8		<1	mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< td=""></lod<>
		zinc { zinc chromate }							-	
30	4	024-007-00-3	-	130	mg/kg	2.774	360.639 mg/kg	0.0361 %		
	\vdash	benzene	+							
31		601-020-00-8 200-753-7 71-43-2	-	<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
32		toluene		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
	-	601-021-00-3 203-625-9 108-88-3	+						-	
33	8	ethylbenzene	-	<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
	-	601-023-00-4 202-849-4 100-41-4	-						-	
34		o-xylene; [1] p-xylene; [2] m-xylene; [3] xylene [4] 601-022-00-9 202-422-2 [1] 95-47-6 [1] 203-396-5 [2] 106-42-3 [2] 203-576-3 [3] 108-38-3 [3] 215-535-7 [4] 1330-20-7 [4]		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
35		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane 603-181-00-X 216-653-1 1634-04-4		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
36	8	TPH (C6 to C40) petroleum group		11	mg/kg		11 mg/kg	0.0011 %		
							Total:	0.0614 %	+	

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because TPH in soil is unlikely to be flammable at concentrations <mark><1000 mg/kg.</mark>

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0011%)

Classification of sample: TP102[2]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

TP102[2] Chapter: 17: Construction and Demolition Wastes (including excavated so from contaminated sites) Sample Depth: from contaminated sites) 0.60-0.80 m Entry: 17 05 04 (Soil and stones other than those mentioned in 17 05 03) Moisture content: 03)	Sample Depth: 0.60-0.80 m Moisture content: 6.3%	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
---	---	--------	---

Hazard properties

None identified

Determinands

Moisture content: 6.3% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound c	onc.	Classification value	MC Applied	Conc. Not Used
1	8	рН		PH		7.3	pН		7.3	pН	7.3 pH		
2	4			s ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< th=""></lod<>
3		phenol				<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< th=""></lod<>
-		604-001-00-2 naphthalene	203-632-7	108-95-2	\vdash							-	
4			202-049-5	91-20-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
5	8	acenaphthylene	205-917-1	208-96-8		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
6	acenaphthene			<0.05	mg/kg		<0.05	ma/ka	<0.000005 %		<lod< th=""></lod<>		
			201-469-6	83-32-9	1							_	
7	8	fluorene	201-695-5	86-73-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
8	8	phenanthrene	201-581-5	85-01-8		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
9	8	anthracene	204-371-1	120-12-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
10	۲	fluoranthene	205-912-4	206-44-0		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
11	۲	pyrene	204-927-3	129-00-0		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
12		benzo[a]anthracene 601-033-00-9		56-55-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
13		chrysene 601-048-00-0	205-923-4	218-01-9		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
14		benzo[b]fluoranthei 601-034-00-4		205-99-2		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>

#		Determinand	CLP Note	User entered	data	Conv. Factor	Compound conc.	Classification value	Applied	Conc. Not Used
		CLP index number EC Number CAS Number	CLP						MC	
15		benzo[k]fluoranthene 601-036-00-5 205-916-6 207-08-9		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
40		benzo[a]pyrene; benzo[def]chrysene		0.05			0.05	0.000005.0/		1.00
16	(601-032-00-3 200-028-5 50-32-8	1	<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
17		indeno[123-cd]pyrene		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
		205-893-2 193-39-5		<0.05	шу/ку		<0.03 mg/kg	<0.000000 78		
18		dibenz[a,h]anthracene 601-041-00-2 200-181-8 53-70-3		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
19		benzo[ghi]perylene		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
13		205-883-8 191-24-2		<0.05	шу/ку		<0.03 mg/kg	<0.000000 78		
20	2	arsenic { arsenic trioxide }		16	mg/kg	1.32	21.125 mg/kg	0.00211 %		
20	(033-003-00-0 215-481-4 1327-53-3				1.02	211120 http://g			
4	3	boron { [®] boron tribromide/trichloride/trifluoride (combined) }								
21		10294-33-4, 10294-34-5, 7637-07-2		0.6	mg/kg	13.43	8.058 mg/kg	0.000806 %		
22 🛋	•	cadmium { cadmium sulfide }	1	<0.2	mg/kg	1.285	<0.257 mg/kg	<0.00002 %		<lod< td=""></lod<>
23	2	chromium in chromium(VI) compounds { chromium(VI) oxide }		<4	mg/kg	1.923	<7.692 mg/kg	<0.000769 %		<lod< td=""></lod<>
	(024-001-00-0 215-607-8 1333-82-0								
24	3	chromium in chromium(III) compounds {		28	mg/kg	1.462	40.924 mg/kg	0.00409 %		
		215-160-9 1308-38-9	1							
25 🛋	•	copper { dicopper oxide; copper (I) oxide }		39	mg/kg	1.126	43.91 mg/kg	0.00439 %		
26 🛋	-	029-002-00-X 215-270-7 1317-39-1 lead { <mark>lead chromate</mark> }	1	26	mg/kg		40.555 mg/kg	0.0026 %		
27		082-004-00-2 231-846-0 7758-97-6 mercury { mercury dichloride }	$\left \right $	<0.3		1.353	<0.406 mg/kg			<lod< td=""></lod<>
	-	080-010-00-X 231-299-8 7487-94-7			iiig/itg	1.000				~200
28	•	nickel { nickel dihydroxide } 028-008-00-X 235-008-5 [1] 12054-48-7 [1] 234-348-1 [2] 11113-74-9 [2]		39	mg/kg	1.579	61.6 mg/kg	0.00616 %		
29		selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<1	mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< td=""></lod<>
30 🛋	3	zinc { zinc chromate }		99	mg/kg	2.774	274.641 mg/kg	0.0275 %		
31		benzene 601-020-00-8 200-753-7 71-43-2		<0.001	mg/kg		<0.001 mg/kg	<0.000001 %		<lod< td=""></lod<>
32		toluene 601-021-00-3 203-625-9 108-88-3		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
33		ethylbenzene		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
	-	601-023-00-4 202-849-4 100-41-4 o-xylene; [1] p-xylene; [2] m-xylene; [3] xylene [4]	\vdash						\vdash	
34	- L	601-022-00-9 202-422-2 [1] 95-47-6 [1] 203-396-5 [2] 106-42-3 [2] 203-576-3 [3] 108-38-3 [3] 215-535-7 [4] 1330-20-7 [4]		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
35		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane 603-181-00-X 216-653-1 1634-04-4		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
36		TPH (C6 to C40) petroleum group	-	<10	mg/kg		<10 mg/kg	<0.001 %		<lod< td=""></lod<>
		· ·					Total:	0.0501 %	Γ	

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
Θ	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: TP103

Sample details

Camala Nama:		
Sample Name:	LoW Code:	-
TP103	Chapter:	17: Construction and Demolition Wastes (including excavated so
Sample Depth:		from contaminated sites)
0.00-0.30 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
16%		
(no correction)		
(no correction)		

Hazard properties

None identified

Determinands

Moisture content: 16% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	l data	Conv. Factor	Compound o	conc.	Classification value	MC Applied	Conc. Not Used
1		рН		PH	-	6.5	рН		6.5	рН	6.5 pH		
2	4	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex } 006-007-00-5			<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< th=""></lod<>	
3		phenol 604-001-00-2	203-632-7	108-95-2		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
4		naphthalene		91-20-3	_	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
5		acenaphthylene	205-917-1	208-96-8	_	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
6	8	acenaphthene	201-469-6	83-32-9	_	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
7	8	fluorene	201-695-5	86-73-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
8	۰	phenanthrene		85-01-8		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
9	٥	anthracene	204-371-1	120-12-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
10		fluoranthene	205-912-4	206-44-0		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
11	۲	pyrene	204-927-3	129-00-0	_	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
12		benzo[a]anthracene 601-033-00-9		56-55-3	_	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
13		chrysene 601-048-00-0	205-923-4	218-01-9	_	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
14		benzo[b]fluoranther 601-034-00-4		205-99-2	_	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>

#		Determinand	CLP Note	User entered	d data	Conv. Factor	Compound conc.	Classification value	: Applied	Conc. Not Used
		CLP index number EC Number CAS Number	CLF						MC	
15		benzo[k]fluoranthene		< 0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-036-00-5 205-916-6 207-08-9	\rightarrow							
16		benzo[a]pyrene; benzo[def]chrysene		< 0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-032-00-3 200-028-5 50-32-8	+							
17	۲	indeno[123-cd]pyrene 205-893-2 193-39-5	_	<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
18		dibenz[a,h]anthracene 601-041-00-2 200-181-8 53-70-3		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
19		benzo[ghi]perylene 205-883-8 191-24-2		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
20	æ	arsenic { arsenic trioxide }	-	0.7		1.00	10.007 ma///a	0.00100.0/		
20	-	033-003-00-0 215-481-4 1327-53-3	-	9.7	mg/kg	1.32	12.807 mg/kg	0.00128 %		
	4	boron { boron tribromide/trichloride/trifluoride (combined) }								
21		10294-33-4, 10294-34-5, 7637-07-2		1.5	mg/kg	13.43	20.145 mg/kg	0.00201 %		
22	4	cadmium { cadmium sulfide }	1	<0.2	mg/kg	1.285	<0.257 mg/kg	<0.00002 %		<lod< td=""></lod<>
23	4	048-010-00-4 215-147-8 1306-23-6 chromium in chromium(VI) compounds { chromium(VI) oxide }	+	<4	ma/ka	1.923	<7.692 mg/kc	<0.000769 %		<lod< td=""></lod<>
20		024-001-00-0 215-607-8 1333-82-0	_	~ ~	iiig/kg	1.525				LOD
24	¥	chromium in chromium(III) compounds { Chromium(II oxide } 215-160-9 1308-38-9	I)	39	mg/kg	1.462	57.001 mg/kg	0.0057 %		
		copper { dicopper oxide; copper (1) oxide }	+							
25	4	029-002-00-X 215-270-7 1317-39-1	_	28	mg/kg	1.126	31.525 mg/kg	0.00315 %		
26	4	lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6	1	30	mg/kg	1.56	46.794 mg/kg	0.003 %		
27	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		<0.3	mg/kg	1.353	<0.406 mg/kg	<0.0000406 %		<lod< td=""></lod<>
	_	nickel { nickel dihydroxide }	+							
28		028-008-00-X 235-008-5 [1] 12054-48-7 [1] 234-348-1 [2] 11113-74-9 [2]		34	mg/kg	1.579	53.703 mg/kg	0.00537 %		
29	*	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex } 034-002-00-8		<1	mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< td=""></lod<>
30	4	zinc { zinc chromate }		120	mg/kg	2.774	332.898 mg/kg	0.0333 %		
31		benzene 601-020-00-8 200-753-7 71-43-2		<0.001	mg/kg		<0.001 mg/kg	<0.000001 %		<lod< td=""></lod<>
32		toluene		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
33	0	601-021-00-3 203-625-9 108-88-3 ethylbenzene	\pm	<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
		601-023-00-4 202-849-4 100-41-4								
34		o-xylene; [1] p-xylene; [2] m-xylene; [3] xylene [4] 601-022-00-9 202-422-2 [1] 95-47-6 [1] 203-396-5 [2] 106-42-3 [2] 203-576-3 [3] 108-38-3 [3] 215-535-7 [4] 1330-20-7 [4]		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
35		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane 603-181-00-X 216-653-1 1634-04-4		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
36	8	TPH (C6 to C40) petroleum group		14	mg/kg		14 mg/kg	0.0014 %		
							Total	0.0567 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because TPH in soil is unlikely to be flammable at concentrations <1000 mg/kg.

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0014%)

Classification of sample: TP103[2]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

	Sample Name: P103[2] Sample Depth: 0.40-0.60 m Moisture content: 1% no correction)		 17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)
--	--	--	--

Hazard properties

None identified

Determinands

Moisture content: 21% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	8	pН		PH		6.9	рН		6.9	pН	6.9 pH		
2	4	exception of compl	of hydrogen cyanide ex cyanides such as hercuric oxycyanide e in this Annex }	s ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< th=""></lod<>
3		phenol				<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< th=""></lod<>
		604-001-00-2 naphthalene	203-632-7	108-95-2								-	
4			202-049-5	91-20-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
5	8	acenaphthylene	205-917-1	208-96-8		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
6	acenaphthene			<0.05	mg/kg		<0.05	ma/ka	<0.000005 %		<lod< th=""></lod<>		
Ľ			201-469-6	83-32-9	1								
7	8	fluorene	201-695-5	86-73-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
8	0	phenanthrene		1		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
-		anthracene	201-581-5	85-01-8								-	
9	8		204-371-1	120-12-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
10		fluoranthene				<0.05	mg/kg		<0.05	malka	<0.000005 %	İ.	<lod< th=""></lod<>
			205-912-4	206-44-0		<0.05	iiig/kg			mg/kg	<0.000003 /8		LOD
11	۲	pyrene	204-927-3	129-00-0		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
12		benzo[a]anthracen				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %	1	<lod< th=""></lod<>
			200-280-6	56-55-3								-	
13		chrysene 601-048-00-0	205-923-4	218-01-9		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
14		benzo[b]fluoranthe			1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
4		601-034-00-4	205-911-9	205-99-2		<0.03	ing/kg		<0.05	шу/ку	<0.000003 %		

#	Determinand		CLP Note	User entered	l data	Conv. Factor	Compound conc.	Classification value	Applied	Conc. Not Used
		CLP index number EC Number CAS Number	CLP						MC	
15		benzo[k]fluoranthene		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %	Γ	<lod< td=""></lod<>
40	ĺ	benzo[a]pyrene; benzo[def]chrysene		0.05			0.05	0.000005.0/		
16		601-032-00-3 200-028-5 50-32-8	1	<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
17	•	indeno[123-cd]pyrene		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
		205-893-2 193-39-5		<0.05	шу/ку 		<0.03 mg/kg	<0.000000 78		
18		dibenz[a,h]anthracene 601-041-00-2 200-181-8 53-70-3		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
19	۲	benzo[ghi]perylene		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
13		205-883-8 191-24-2		<0.05	iiig/kg		<0.05 mg/kg	<0.000000 78		
20	4	arsenic { arsenic trioxide }		11	mg/kg	1.32	14.524 mg/kg	0.00145 %		
		033-003-00-0 215-481-4 1327-53-3								
	4	boron { [®] boron tribromide/trichloride/trifluoride (combined) }								
21		10294-33-4, 10294-34-5, 7637-07-2		0.8	mg/kg	13.43	10.744 mg/kg	0.00107 %		
22	~	cadmium { cadmium sulfide }	1	<0.2	mg/kg	1.285	<0.257 mg/kg	<0.00002 %		<lod< td=""></lod<>
23	4	chromium in chromium(VI) compounds { chromium(VI) oxide }		<4	mg/kg	1.923	<7.692 mg/kg	<0.000769 %		<lod< td=""></lod<>
		024-001-00-0 215-607-8 1333-82-0								
24	4	oxide }		34	mg/kg	1.462	49.693 mg/kg	0.00497 %		
		215-160-9 1308-38-9								
25	4	copper { dicopper oxide; copper (I) oxide }		28	mg/kg	1.126	31.525 mg/kg	0.00315 %		
26	4	029-002-00-X 215-270-7 1317-39-1 lead { lead chromate }	1	20	mg/kg		31.196 mg/kg	0.002 %		
-	2	082-004-00-2 231-846-0 7758-97-6 mercury { mercury dichloride }		<0.3		1.353	<0.406 mg/kg			<lod< td=""></lod<>
21		080-010-00-X 231-299-8 7487-94-7		<0.5	iiig/kg	1.555	<0.400 mg/kg	<0.0000400 78		
28		nickel { nickel dihydroxide } 228-008-00-X 235-008-5 [1] 12054-48-7 [1] 234-348-1 [2] 11113-74-9 [2]	-	39	mg/kg	1.579	61.6 mg/kg	0.00616 %		
29	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<1	mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< td=""></lod<>
30		zinc { zinc chromate }		120	mg/kg	2.774	332.898 mg/kg	0.0333 %		
31		benzene 601-020-00-8 200-753-7 71-43-2	+	<0.001	mg/kg		<0.001 mg/kg	<0.000001 %	F	<lod< td=""></lod<>
32		toluene		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
		601-021-00-3 203-625-9 108-88-3 ethylbenzene	+						-	
33	٩	601-023-00-4 202-849-4 100-41-4	-	<0.001	mg/kg		<0.001 mg/kg	<0.000001 %		<lod< td=""></lod<>
		o-xylene; [1] p-xylene; [2] m-xylene; [3] xylene [4]	+							
34		601-022-00-9 202-422-2 [1] 95-47-6 [1] 203-396-5 [2] 106-42-3 [2] 203-576-3 [3] 108-38-3 [3] 215-535-7 [4] 1330-20-7 [4]		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
35		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane 503-181-00-X 216-653-1 1634-04-4		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
36	۵	TPH (C6 to C40) petroleum group		<10	mg/kg		<10 mg/kg	<0.001 %		<lod< td=""></lod<>
		· · ·				l	Total:	0.0546 %	1	

Key								
	User supplied data							
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason							
Θ	Determinand defined or amended by HazWasteOnline (see Appendix A)							
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration							
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection							
CLP: Note 1	1 Only the metal concentration has been used for classification							

Classification of sample: TP104

Sample details

Sample Name:	LoW Code:	
TP104	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.00-0.20 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
15%		
(no correction)		

Hazard properties

None identified

Determinands

Moisture content: 15% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	8	рН		PH		7	pН		7	pН	7pH		
2	4				<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< td=""></lod<>	
3		phenol 604-001-00-2	203-632-7	108-95-2		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
4		naphthalene		91-20-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %	F	<lod< td=""></lod<>
5	8	acenaphthylene	205-917-1	208-96-8	_	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
6	Θ	acenaphthene	201-469-6	83-32-9	_	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
7	0	fluorene		86-73-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
8	0	phenanthrene		85-01-8		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %	F	<lod< td=""></lod<>
9	٥	anthracene		120-12-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
10	8	fluoranthene	205-912-4	206-44-0	_	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
11	۲	pyrene	204-927-3	129-00-0	_	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
12		benzo[a]anthracene 601-033-00-9		56-55-3	_	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
13		chrysene 601-048-00-0	205-923-4	218-01-9	_	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
14		benzo[b]fluoranther 601-034-00-4		205-99-2	_	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>

#		Determinand	CLP Note	User entered	l data	Conv. Factor	Compound conc.	Classification value	Applied	Conc. Not Used
		CLP index number EC Number CAS Number	CLP						MC /	
15		benzo[k]fluoranthene		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-036-00-5 205-916-6 207-08-9								
16		benzo[a]pyrene; benzo[def]chrysene		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
_		601-032-00-3 200-028-5 50-32-8								
17	Θ	indeno[123-cd]pyrene		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
		205-893-2 193-39-5							_	
18		dibenz[a,h]anthracene 601-041-00-2 200-181-8 53-70-3		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
19	0	benzo[ghi]perylene 205-883-8 191-24-2		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
	•	arsenic { arsenic trioxide }	+						-	
20	4	033-003-00-0 215-481-4 1327-53-3		6	mg/kg	1.32	7.922 mg/kg	0.000792 %		
			-							
21	4	boron { <pre> boron tribromide/trichloride/trifluoride (combined) } </pre>		1.1	malka	13.43	14.773 mg/kg	0.00148 %		
21		10294-33-4, 10294-34-5,		1.1	шу/ку	15.45	14.773 mg/kg	0.00148 %		
		7637-07-2	-						-	
22		cadmium { cadmium sulfide } 048-010-00-4 215-147-8 1306-23-6	1	<0.2	mg/kg	1.285	<0.257 mg/kg	<0.00002 %		<lod< td=""></lod<>
23	4	chromium in chromium(VI) compounds {		<4	mg/kg	1.923	<7.692 mg/kg	<0.000769 %		<lod< td=""></lod<>
		024-001-00-0 215-607-8 1333-82-0							ļ	
24	4	chromium in chromium(III) compounds { <pre> chromium(III) oxide } </pre>		39	mg/kg	1.462	57.001 mg/kg	0.0057 %		
		215-160-9 1308-38-9	1							
25	×\$	copper { dicopper oxide; copper (I) oxide }		31	mg/kg	1.126	34.903 mg/kg	0.00349 %		
		029-002-00-X 215-270-7 1317-39-1								
26	4	lead { lead chromate }	1	26	mg/kg	1.56	40.555 mg/kg	0.0026 %		
27	æ	082-004-00-2 231-846-0 7758-97-6 mercury { mercury dichloride }		<0.3	ma/ka	1 252	<0.406 mg/kg	<0.0000406 %		<lod< td=""></lod<>
21		080-010-00-X 231-299-8 7487-94-7		<0.5	шу/ку	1.353	<0.406 mg/kg	<0.0000400 %		LOD
28		nickel { nickel dihydroxide } 028-008-00-X 235-008-5 [1] 12054-48-7 [1]		36	mg/kg	1.579	56.862 mg/kg	0.00569 %		
	<u>a</u>	234-348-1 [2] 11113-74-9 [2] selenium { selenium compounds with the exception of								
29		cadmium sulphoselenide and those specified elsewhere in this Annex } 034-002-00-8		<1	mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< td=""></lod<>
	æ	zinc { zinc chromate }							÷	
30		024-007-00-3	{	110	mg/kg	2.774	305.156 mg/kg	0.0305 %		
24		benzene	\square	.0.004			.0.001	.0.0000004.0/		1.00
31		601-020-00-8 200-753-7 71-43-2	1	<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
32		toluene 601-021-00-3 203-625-9 108-88-3		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
	-	ethylbenzene	\vdash							
33	9	601-023-00-4 202-849-4 100-41-4	{	<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
		o-xylene; [1] p-xylene; [2] m-xylene; [3] xylene [4]	\square							
34		601-022-00-9 202-422-2 [1] 95-47-6 [1] 203-396-5 [2] 106-42-3 [2] 203-576-3 [3] 108-38-3 [3] 215-535-7 [4] 1330-20-7 [4]		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
35		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane 603-181-00-X 216-653-1 1634-04-4		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
36	0	TPH (C6 to C40) petroleum group		<10	mg/kg		<10 mg/kg	<0.001 %		<lod< td=""></lod<>
	·	1 1					Total:	0.0527 %	1	

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: TP104[2]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name: FP104[2] Sample Depth: J.40-0.60 m Moisture content: J2% no correction)	 17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 12% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	8	pН		PH		6.8	pН		6.8	рН	6.8 pH		
2	4	exception of compl	of hydrogen cyanide ex cyanides such as nercuric oxycyanide e in this Annex }	s ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< th=""></lod<>
3		phenol				<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< th=""></lod<>
-		604-001-00-2 naphthalene	203-632-7	108-95-2	-							-	
4			202-049-5	91-20-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
5	8	acenaphthylene	205-917-1	208-96-8		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
6	8	acenaphthene			<0.05	mg/kg		< 0.05	ma/ka	<0.000005 %		<lod< th=""></lod<>	
Ľ			201-469-6	83-32-9	1								
7	Θ	fluorene	201-695-5	86-73-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
8		phenanthrene		1		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
			201-581-5	85-01-8	-								
9	۲	anthracene	204-371-1	120-12-7	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
10		fluoranthene			+	-0.05			< 0.05		-0.000005.0/	h	<lod< td=""></lod<>
10			205-912-4	206-44-0		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
11	۲	pyrene	204-927-3	129-00-0		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
12		benzo[a]anthracen				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %	ĺ	<lod< th=""></lod<>
			200-280-6	56-55-3]							_	
13		chrysene 601-048-00-0	205-923-4	218-01-9	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		benzo[b]fluoranthe		10.01-3	+	0.05			0.05		0.000005.0/		1.00
14			205-911-9	205-99-2		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>

#		Determinand	CLP Note	User entered	data	Conv. Factor	Compound conc.	Classification value	Applied	Conc. Not Used
		CLP index number EC Number CAS Number	CLF						MC	
15		benzo[k]fluoranthene 601-036-00-5 205-916-6 207-08-9		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
10		benzo[a]pyrene; benzo[def]chrysene		0.05			0.05	0.000005.0/		1.00
16		601-032-00-3 200-028-5 50-32-8		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
17	8	indeno[123-cd]pyrene		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
		205-893-2 193-39-5			iiig/itg					
18		dibenz[a,h]anthracene 601-041-00-2 200-181-8 53-70-3	-	<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
19	8	benzo[ghi]perylene 205-883-8 191-24-2		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
	4	arsenic { arsenic trioxide }								
20	*	033-003-00-0 215-481-4 1327-53-3		8.9	mg/kg	1.32	11.751 mg/kg	0.00118 %		
	4	boron { [©] boron tribromide/trichloride/trifluoride (combined) }				13 43				
21				0.7	mg/kg		9.401 mg/kg	0.00094 %		
		10294-33-4, 10294-34-5,		0.7	шу/ку	13.43		0.00034 78		
		7637-07-2							H	
22	4	cadmium { cadmium sulfide } 048-010-00-4 215-147-8 1306-23-6	1	<0.2	mg/kg	1.285	<0.257 mg/kg	<0.00002 %		<lod< td=""></lod<>
23	6	chromium in chromium(VI) compounds {		<4	mg/kg	1.923	<7.692 mg/kg	<0.000769 %		<lod< td=""></lod<>
		024-001-00-0 215-607-8 1333-82-0								
24	4	chromium in chromium(III) compounds {		33 m	mg/kg	1.462	48.231 mg/kg	0.00482 %		
		215-160-9 1308-38-9								
25	4	copper {		30	ma/ka	1.126	33.777 mg/kg	0.00338 %		
		029-002-00-X 215-270-7 1317-39-1								
26	4	lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6	1	21	mg/kg	1.56	32.756 mg/kg	0.0021 %		
27	6	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		<0.3	mg/kg	1.353	<0.406 mg/kg	<0.0000406 %		<lod< td=""></lod<>
	æ	nickel { nickel dihydroxide }								
28		028-008-00-X 235-008-5 [1] 12054-48-7 [1] 234-348-1 [2] 11113-74-9 [2]	-	37	mg/kg	1.579	58.441 mg/kg	0.00584 %		
29	*	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }	-	<1	mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< td=""></lod<>
30		zinc { zinc chromate }		100	mg/kg	2.774	277.415 mg/kg	0.0277 %		
		024-007-00-3 benzene	\vdash				0.001	0.0000001.07	\vdash	
31		601-020-00-8 200-753-7 71-43-2		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
32		toluene 601-021-00-3 203-625-9 108-88-3		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
33	8	ethylbenzene		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
		601-023-00-4 202-849-4 100-41-4	-						H	
34		o-xylene; [1] p-xylene; [2] m-xylene; [3] xylene [4] 601-022-00-9 202-422-2 [1] 95-47-6 [1] 203-396-5 [2] 106-42-3 [2] 203-576-3 [3] 108-38-3 [3] 215-535-7 [4] 1330-20-7 [4]		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
35		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane 603-181-00-X 216-653-1 1634-04-4		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
36	8	TPH (C6 to C40) petroleum group		<10	mg/kg		<10 mg/kg	<0.001 %		<lod< td=""></lod<>
<u> </u>			L				Total:	0.0485 %	۲	

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
Θ	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Appendix A: Classifier defined and non CLP determinands

• pH (CAS Number: PH)

Description/Comments: Appendix C4 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: None.

• salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex

CLP index number: 006-007-00-5

Description/Comments: Conversion factor based on a worst case compound: sodium cyanide Data source: Commission Regulation (EC) No 790/2009 - 1st Adaptation to Technical Progress for Regulation (EC) No 1272/2008. (ATP1) Additional Hazard Statement(s): EUH032 >= 0.2 % Reason for additional Hazards Statement(s)/Risk Phrase(s):

14 Dec 2015 - EUH032 >= 0.2 % hazard statement sourced from: WM3, Table C12.2

acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Skin Irrit. 2 H315, STOT SE 3 H335, Eye Irrit. 2 H319, Acute Tox. 1 H310, Acute Tox. 1 H330, Acute Tox. 4 H302

acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Aquatic Chronic 2 H411, Aquatic Chronic 1 H410, Aquatic Acute 1 H400, Skin Irrit. 2 H315, STOT SE 3 H335, Eye Irrit. 2 H319

• fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Aquatic Chronic 1 H410 , Aquatic Acute 1 H400

• phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Skin Irrit. 2 H315, Aquatic Chronic 1 H410, Aquatic Acute 1 H400, Skin Sens. 1 H317, Carc. 2 H351, STOT SE 3 H335, Eye Irrit. 2 H319, Acute Tox. 4 H302

^a anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Aquatic Chronic 1 H410 , Aquatic Acute 1 H400 , Skin Sens. 1 H317 , Skin Irrit. 2 H315 , STOT SE 3 H335 , Eye Irrit. 2 H319

^e fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21 Aug 2015 Hazard Statements: Aquatic Chronic 1 H410 , Aquatic Acute 1 H400 , Acute Tox. 4 H302

• pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21 Aug 2015 Hazard Statements: Aquatic Chronic 1 H410, Aquatic Acute 1 H400, STOT SE 3 H335, Eye Irrit. 2 H319, Skin Irrit. 2 H315

Report created by Fiona Waldron on 06 Mar 2019

[•] indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Carc. 2 H351

• benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 23 Jul 2015 Hazard Statements: Aquatic Chronic 1 H410, Aquatic Acute 1 H400

• boron tribromide/trichloride/trifluoride (combined) (CAS Number: 10294-33-4, 10294-34-5, 7637-07-2)

Conversion factor: 13.43 Description/Comments: Combines the hazard statements and the average of the conversion factors for boron tribromide, boron trichloride and boron trifluoride Data source: N/A Data source date: 06 Aug 2015 Hazard Statements: Skin Corr. 1B H314, Skin Corr. 1A H314, Acute Tox. 2 H300, Acute Tox. 2 H330, EUH014

• chromium(III) oxide (EC Number: 215-160-9, CAS Number: 1308-38-9)

Conversion factor: 1.462 Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Aquatic Chronic 1 H410, Aquatic Acute 1 H400, Repr. 1B H360FD, Skin Sens. 1 H317, Resp. Sens. 1 H334, Skin Irrit. 2 H315, STOT SE 3 H335, Eye Irrit. 2 H319, Acute Tox. 4 H302, Acute Tox. 4 H332

• ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

CLP index number: 601-023-00-4 Description/Comments: Data source: Commission Regulation (EU) No 605/2014 – 6th Adaptation to Technical Progress for Regulation (EC) No 1272/2008. (ATP6) Additional Hazard Statement(s): Carc. 2 H351 Reason for additional Hazards Statement(s)/Risk Phrase(s): 03 Jun 2015 - Carc. 2 H351 hazard statement sourced from: IARC Group 2B (77) 2000

• TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: Aquatic Chronic 2 H411, Repr. 2 H361d, Carc. 1B H350, Muta. 1B H340, STOT RE 2 H373, Asp. Tox. 1 H304, Flam. Liq. 3 H226

Appendix B: Rationale for selection of metal species

cyanides {salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex}

Report created by Fiona Waldron on 06 Mar 2019

lead {lead chromate}

Worst case species based on hazard statements

mercury {mercury dichloride}

Worst case species based on hazard statements

nickel {nickel dihydroxide}

Worst case species based on hazard statements

selenium (selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex)

Worst case species based on hazard statements

zinc {zinc chromate}

Worst case

Appendix C: Version

HazWasteOnline Classification Engine: WM3 1st Edition v1.1, May 2018 HazWasteOnline Classification Engine Version: 2019.63.3818.7784 (04 Mar 2019) HazWasteOnline Database: 2019.63.3818.7784 (04 Mar 2019)

This classification utilises the following guidance and legislation: WM3 v1.1 - Waste Classification - 1st Edition v1.1 - May 2018 CLP Regulation - Regulation 1272/2008/EC of 16 December 2008 1st ATP - Regulation 790/2009/EC of 10 August 2009 2nd ATP - Regulation 286/2011/EC of 10 March 2011 3rd ATP - Regulation 618/2012/EU of 10 July 2012 4th ATP - Regulation 487/2013/EU of 8 May 2013 Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013 5th ATP - Regulation 944/2013/EU of 2 October 2013 6th ATP - Regulation 605/2014/EU of 5 June 2014 WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014 Revised List of Wastes 2014 - Decision 2014/955/EU of 18 December 2014 7th ATP - Regulation 2015/1221/EU of 24 July 2015 8th ATP - Regulation (EU) 2016/918 of 19 May 2016 9th ATP - Regulation (EU) 2016/1179 of 19 July 2016 10th ATP - Regulation (EU) 2017/776 of 4 May 2017 HP14 amendment - Regulation (EU) 2017/997 of 8 June 2017 13th ATP - Regulation (EU) 2018/1480 of 4 October 2018 POPs Regulation 2004 - Regulation 850/2004/EC of 29 April 2004 1st ATP to POPs Regulation - Regulation 756/2010/EU of 24 August 2010 2nd ATP to POPs Regulation - Regulation 757/2010/EU of 24 August 2010

APPENDIX J

CSM Risk Assessment Methodology

CONCEPTUAL SITE MODEL

General

The aim of the initial conceptual model and risk assessment is to provide a preliminary identification of the risks to controlled waters, proposed future site users and the surrounding area posed by any contamination present on site. The assessment is based on identification of 'contaminant linkages', i.e. contaminant-pathway-receptor relationships. This approach accords with the guidance that accompanies Part 2A of the Environmental Protection Act of 1990 where land is considered to be contaminated when 'significant harm' is occurring, or where there is the 'significant possibility of significant harm' or where significant pollution of controlled waters is being, or is likely to be caused. In such cases the contaminant linkage itself is defined as being 'significant'.

A source of contamination and a pathway to receptors must be present for there to be a risk. The preliminary risk assessment assesses the strength of the link between the source, the pathway and the receptor.

Source - Contaminant that has potential to cause harm to environmental receptors. In a wider sense, sources can include particular ground conditions, for example the existence of redundant footings, which have the potential to impact on development proposals.

Pathway - The route by which the source is brought into contact with the receptor. This can include the transport of contamination via groundwater, wind-blown dust, vapours, excavation and deposition etc.

Receptor - Human beings, other living organisms, physical systems and built structures that could be affected by the source. A receptor will only be affected if a pathway from the source to the receptor is present. Groundwater and surface water systems can be considered as receptors in their own right as their quality is regulated by the statutory bodies, as well as being pathways for contaminant migration to other receptors.

ENVIRONMENTAL RISK ASSESSMENT

Qualitative Methodology

The risk assessment considers the potential sources, receptors and pathways identified in the Conceptual Site Model.

The environmental assessment has been undertaken with due regard to Contaminated Land Guidance Documents issued by the Department of the Environment Food and Rural Affairs (DEFRA). The Guidance requires a risk-based approach; with the potential environmental risk assessed qualitatively using the 'source-pathway-target' contaminant linkage concept contained in Part 2A of the Environment Protection Act. Unless specifically stated as relating to 'Contaminated Land' as defined in the Environmental Protection Act 1990 (as amended), references to 'contamination' and 'contaminants' relate in general terms to the presence of potentially hazardous substances, in, on or under the subject site.

Based on information presented in

- CIRIA C552 (2001) Contaminated Land Risk Assessment: A guide to good practice; and
- NHBC / EA/ CIEH (2008) R&D Publication 66: (Volume 1) Guidance for the Safe Development of Housing on Land Affected by Contamination
- DEFRA (2012) Environmental Protection Act 1990: Part 2A. Contaminated Land Statutory Guidance

Risk assessment considers the identified sources, the potential receptors and the pathways linking them together.

The designation of risk is based upon the consideration of both:

- a. **the severity of the potential consequence -** this takes into account both the potential severity of the hazard and the sensitivity of the receptor
- b. **the magnitude of probability** (i.e. likelihood) this takes into account both the presence of the hazard and receptor and the integrity of the pathway

Severity (consequence) can be defined as the adverse effects (or harm) arising from a defined hazard, which impairs the quality of human health or the environment in the short or longer term. Definitions of different categories of severity are detailed in Table 1 below.

Probability can be defined as the chance of a particular event occurring in a given period of time. Definitions of different categories of probability are detailed in Table 2 below.

A contaminant linkage must first be established before tests for probability and consequence are applied. If there is no contaminant linkage then there is no potential risk.

	Human Health	Controlled Water	Built Environment ¹	Ecosystems ²
Severe	Short term (acute) risk to human health. Concentrations present <u>likely</u> to result in "significant harm" as defined by Part 2A.	Substantial pollution of sensitive water resources.	Catastrophic damage to buildings, structures or the environment, including building collapse.	Major damage to aquatic or other ecosystem, which is likely to result in a substantial adverse change or irreversible change in its functioning or harm to a species of special interest.
Medium	Chronic damage to human health. Concentrations present that <u>could</u> result in significant harm.	Pollution of sensitive water resources or small scale pollution of sensitive water resources	Significant damage to buildings, structures or the environment making it unsafe to occupy, or damage that may impair a scheduled ancient monument.	Significant damage to aquatic or other ecosystems or organism forming part of an ecosystem that could endanger the long term maintenance of a population at that location.
Mild	Slight short term health effects to humans. Exposure to human health <u>unlikely</u> to lead to significant harm.	Pollution to non- sensitive water resources	Minor damage to sensitive buildings, structures, services or the environment.	Minor or short lived damage to aquatic or other ecosystems.
Minor	Non-permanent health effects to human health (easily prevented by means such as personal protective clothing etc.)	Insubstantial pollution to non-sensitive water resources	Easily repairable effects of damage to buildings or structures	Harm (although not necessarily significant harm which may result in financial loss or expenditure to resolve e.g. loss of plants in a landscape scheme).

Table 1 - Classification of Potential Consequence (Severity)

- Property includes crops including timber, produce grown domestically (gardens or allotments for consumption), livestock, other owned or domesticated animals or wild animals which are subject to shooting or fishing rights. It also includes buildings, meaning any structure or erection, but does not include plant or machinery within a building or buried services.
- 2. Where ecological system effects relate to a Site of Special Scientific Interest (SSSI), National Nature Reserves (NNR), Marine Nature Reserve (MNR), and areas of Special Protection for Birds, a "European site", or any habitat or site afforded protection under the Wildlife & Countryside Act 1981 and The Conservation of Habitats and Species Regulations 2010, i.e. candidate Special Areas of Conservation, potential Special Protection Areas and listed Ramsar sites.

Table 2 Classification of Probability

(Only applies if there is a possibility of a contaminant linkage being present)

High likelihood	There is a contaminant linkage and an event that either appears very likely in the short term and almost inevitable over the long term or there is evidence at the receptor of harm or pollution.
Likely	There is a contaminant linkage and all the elements are present and in the right place, which means that it is probable that an event will occur. Circumstances are such that an event is not inevitable, but possible in the short term and likely over the long term.
Low Likelihood	There is a contaminant linkage and circumstances are possible under which an event could occur. However it is by no means certain that even over a longer period such an event would take place and is less likely in the shorter term.
Unlikely	There is a contaminant linkage but circumstances are such that it is improbable that an event would occur even in the very long term.

Table 3 Classification of Risk

Once the severity and probability have been classified for a contaminant linkage they can be compared to produce a risk category from very high risk to very low risk as shown in the matrix below.

Probability	Unlikely	Low	Likely	High	
Minor	Very Low	Very Low	Low	Moderate/Low	
Mild	Very Low	Low	Moderate/Low	Moderate	
Medium	Low	Moderate/Low	Moderate	High	
Severe	Moderate/Low	Moderate	High	Very High	
Consequence					

Table 4 Risk Classification Descriptions

Table 4 below describes the risk classifications.

Risk Term	Description
Very High Risk	There is a high probability that significant harm could arise to a designated receptor from an identified hazard at the site without appropriate remedial action or there is evidence that significant harm to a designated receptor is already occurring.
High Risk	Harm is likely to arise to a designated receptor from an identified hazard at the site without appropriate remedial action. Remediation works may be necessary in the short-term and are likely over the longer term.
Moderate Risk	It is possible that harm could arise to a designated receptor from an identified hazard. However it is either relatively unlikely that any such harm would be severe or if any harm were to occur it is more likely that such harm would be relatively mild. Some remediation work may be required in the longer term.
Low Risk	It is possible that harm could arise to a designated receptor from an identified hazard, but it is likely, at worst, that this harm if realised would normally be mild. Any subsequent remediation works are likely to be relatively limited.
Very Low Risk	It is a low possibility that harm could arise to a receptor, but it is likely at worst, that this harm if realised would normally be mild or minor.

Arcadis (UK) Limited

St Mellons Business Park Arcadis Cymru House Fortran Road Cardiff CF3 0EY United Kingdom

T: +44 (0)2920 926 700

arcadis.com